Use of a mixed sericea lespedeza and grass pasture system for control of gastrointestinal nematodes in lambs and kids.

Vet Parasitol

United States Department of Agriculture, Agricultural Research Service, Booneville, AR 72927, USA.

Published: May 2012

Because of a high prevalence of anthelmintic resistance and consumer demand for chemical free meat products, management tools to minimize the need for deworming are needed. The objective was to examine the effectiveness of grazing sericea lespedeza (SL) in a mixed grass or a pure forage system for control of gastrointestinal nematodes (GIN); in other words pasture systems included grass, grass plus SL, or SL alone (Experiments 2 and 3). Selective use of copper oxide wire particles (COWP) based on the FAMACHA(©) system was used to aid in GIN control. In Experiment 1, lambs co-grazed bermudagrass (BG; n=21) or SL in a mixed grass pasture (SLM; n=22) with dams for 14 days. In Experiment 2, lambs grazed BG (n=14), SLM (n=13), or pure SL (SLP; n=13) pastures for 56 days. In Experiment 3, doe kids grazed BG (n=12), SLM (n=13), or SLP (n=13) for 84 days. Animals were fed a 16% crude protein supplement based on NRC requirements and estimated forage quality of pastures, so that 454, 389, and 200 g/lamb (Experiment 2), or 454, 300, and 150 g of supplement/goat (Experiment 3) was fed to BG, SLM, and SLP, respectively. Animals were dewormed with COWP if FAMACHA(©) was >3. Coprocultures were conducted to identify GIN genus. In Experiment 1, FEC were reduced in lambs grazing SLM compared with BG pastures. In Experiment 2, FEC were reduced in SLP compared with BG lambs on all days, and reduced in SLM compared with BG lambs on day 56. Initially, Haemonchus contortus was the predominant nematode, but the population shifted to other species in the SL groups by the end of the study. The mean number of dewormings/lamb was 0.71, 0.20, and 0.21±0.13 for BG, SLM, and SLP groups, respectively. In goats in Experiment 3, Trichostrongylus spp. was the predominant nematode in May and June and H. contortus in July. There was little meaningful effect of forage treatments on GIN infection in kids. Because H. contortus was not the predominant nematode in kids, the integrated approaches used may not have been effective in controlling GIN. Grazing SL was effective for GIN control in lambs in early summer, but the effect was delayed in lambs grazing a mixed SL/grass pasture unless lambs initially grazed with dams. An integrated approach used that included SL grazing and COWP for deworming was effective in lambs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetpar.2011.11.074DOI Listing

Publication Analysis

Top Keywords

predominant nematode
12
lambs
10
sericea lespedeza
8
grass pasture
8
system control
8
control gastrointestinal
8
gastrointestinal nematodes
8
mixed grass
8
gin control
8
experiment
8

Similar Publications

Identification, distribution, and hosts of spp. infecting horticultural crops in Florida, USA with focus on .

J Nematol

March 2024

Department of Entomology and Nematology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, 33598, USA.

Many root-knot nematode (RKN) species in the genus occur in Florida, including , a species able to overcome RKN resistance genes in many crops. The distribution of these nematodes in horticultural crops is not well known. A RKN survey was conducted in South and Central Florida aiming to: (i) identify RKN infecting vegetables, fruit, and other crops; (ii) document host plants; (iii) determine RKN distribution; and (iv) gain insight on the relatedness of obtained in this study with other populations from the USA and other countries.

View Article and Find Full Text PDF

Dirofilariasis is a globally significant emerging-zoonotic-disease caused by nematode parasites belonging to the genus Dirofilaria (Rhabditida: Onchocercidae) and is transmitted by mosquitoes (Diptera: Culicidae) of the Culicidae family. A recent study on molecular prevalence of Dirofilaria sp. "hongkongensis" To, 2012 (nomen nudum) among the dog population in Kerala indicated a high infection rate.

View Article and Find Full Text PDF

FMRFamide-like peptides (FLPs) and their receptors FMRFamide-related peptide receptors (FRPRs) are widely conserved in free-living and parasitic nematodes. Herein, we identified FRPR-1 as a of FLP-1 receptor candidate involved in larval development and diapause in the model nematode Caenorhabditis elegans. Our molecular genetic study, supported by in silico research, revealed the following: 1) frpr-1 loss-of-function completely suppresses the promotion of larval diapause caused by flp-1 overexpression; 2) AlphaFold2 analysis revealed the binding of FLP-1 to FRPR-1; 3) FRPR-1 as well as FLP-1modulates the production and secretion of the predominant insulin-like peptide DAF-28, which is produced in ASI neurons; and 4) the suppression of larval diapause by frpr-1 loss-of-function is completely suppressed by a daf-28 defect.

View Article and Find Full Text PDF

Background: This study investigates the prevalence and intensity of parasitic infections in animal fecal samples collected from Sitio Ibayo, San Mateo, Rizal, Philippines, a suburban community considered a potential sentinel site for zoonotic disease surveillance.

Methods: Using cross-sectional sampling, 132 animal fecal samples were collected in the area exhaustively. Samples were processed through direct smear with saline solution and Lugol's iodine and flotation technique using mini- and fill-FLOTAC.

View Article and Find Full Text PDF

Background: Ascaris lumbricoides is a nematode that parasitizes the human gastrointestinal tract, and it is the cause of the most common helminthic infections worldwide. It predominates in areas of poor sanitation. Early diagnosis of this intestinal infection is pivotal to avoid its severe and lethal complications such as gut obstruction, volvulus, and perforation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!