In this paper, we present a dual-modality imaging system combining three-dimensional (3D) continuous-wave transillumination fluorescence tomography with 3D ultrasound (US) imaging. We validated the system with two phantoms, one containing fluorescent inclusions (Cy5.5) at different depths, and another varying-thickness semicylindrical phantom. Using raster scanning, the combined fluorescence/US system was used to collect the boundary fluorescent emission in the X-Y plane, as well as recovered the 3D surface and position of the inclusions from US signals. US images were segmented to provide soft priors for the fluorescence image reconstruction. Phantom results demonstrated that with priors derived from the US images, the fluorescent reconstruction quality was significantly improved. As further evaluation, we show pilot in vivo results using an Apo-E mouse to assess the feasibility and performance of this system in animal studies. Limitations and potential to be used in artherosclerosis studies are then discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1117/1.3662455DOI Listing

Publication Analysis

Top Keywords

imaging system
8
system combining
8
system
5
low-cost three-dimensional
4
three-dimensional imaging
4
combining fluorescence
4
fluorescence ultrasound
4
ultrasound paper
4
paper dual-modality
4
dual-modality imaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!