A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monte Carlo simulation methods for computing the wetting and drying properties of model systems. | LitMetric

Monte Carlo simulation methods for computing the wetting and drying properties of model systems.

J Chem Phys

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, USA.

Published: December 2011

We introduce general Monte Carlo simulation methods for determining the wetting and drying properties of model systems. We employ an interface-potential-based approach in which the interfacial properties of a system are related to the surface excess free energy of a thin fluid film in contact with a surface. Two versions of this approach are explored: a "spreading" method focused on the growth of a thin liquid film from a surface in a mother vapor and a "drying" method focused on the growth of a thin vapor film from a surface in a mother liquid. The former provides a direct measure of the spreading coefficient while the latter provides an analogous drying coefficient. When coupled with an independent measure of the liquid-vapor surface tension, these coefficients enable one to compute the contact angle. We also show how one can combine information gathered from application of the spreading and drying methods at a common state point to obtain direct measures of the contact angle and liquid-vapor surface tension. The computational strategies introduced here are applied to two model systems. One includes a monatomic Lennard-Jones fluid that interacts with a structureless substrate via a long-ranged substrate potential. The second model contains a monatomic Lennard-Jones fluid that interacts with an atomistically detailed substrate via a short-ranged potential. Expanded ensemble techniques are coupled with the interface potential approach to compile the temperature- and substrate strength-dependence of various interfacial properties for these systems. Overall, we find that the approach pursued here provides an efficient and precise means to calculate the wetting and drying properties of model systems.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3668137DOI Listing

Publication Analysis

Top Keywords

model systems
16
wetting drying
12
drying properties
12
properties model
12
monte carlo
8
carlo simulation
8
simulation methods
8
interfacial properties
8
method focused
8
focused growth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!