A class II hybrid sol-gel material was prepared starting from zirconium(IV) propoxide and 2,4-pentanedione and its catalytic activity in the removal of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) was revealed. The thermal and structural characterization, performed by thermogravimetry, differential thermal analysis, and diffuse reflectance Fourier transform infrared spectroscopy, demonstrated the hybrid nature of the material. The structure of the material can be described as a polymeric network of zirconium oxo clusters, on the surface of which large part of Zr(4+) ions are involved in strong complexation equilibria with acetylacetonate (acac) ligands. The incubation of MCPA in the presence of this material yielded an herbicide removal fraction up to 98%. A two-step mechanism was proposed for the MCPA removal, in which a reversible first-order adsorption of the herbicide is followed by its catalytic degradation. The nature of the products of the MCPA catalytic degradation as well as the reaction conditions adopted do not support typical oxidation pathways involving radicals, suggesting the existence of a different mechanism in which the Zr(4+):acac enol-type complex can act as Lewis acid catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es203223sDOI Listing

Publication Analysis

Top Keywords

hybrid sol-gel
8
removal herbicide
8
catalytic degradation
8
mcpa
5
sol-gel zirconia
4
zirconia matrix
4
removal
4
matrix removal
4
herbicide
4
herbicide mcpa
4

Similar Publications

A new photopolymerizable organic-inorganic (O-I) hybrid sol-gel material, AUP@SiO-184, has been synthesized and utilized as a gate dielectric in flexible organic thin-film transistors (OTFTs). The previously reported three-arm alkoxy-functionalized silane amphiphilic polymer has yielded stable O-I hybrid materials comprising uniformly dispersed nanoparticles in the sol state. In this study, a photosensitizer was introduced, facilitating curing effects under ultraviolet light.

View Article and Find Full Text PDF

Dynamic hydrogels have attracted considerable attention in the application of flexible electronics, as they possess injectable and self-healing abilities. However, it is still a challenge to combine high conductivity and antibacterial properties into dynamic hydrogels. In this work, we fabricated a type of dynamic hydrogel based on acylhydrazone bonds between thermo-responsive copolymer and silver nanoparticles (AgNPs) functionalized with hydrazide groups.

View Article and Find Full Text PDF

A hybrid coating made of poly (methyl methacrylate) with SiO2-TiO2 particles (PMMA/SiO2-TiO2) has been developed for use as a coating on nanosatellites, evaluating its resistance to high vacuum by quantifying its weight loss. The coating was applied on an Al 7075 aluminum substrate used for the aerospace sector. PMMA/SiO2-TiO2 hybrid coatings were prepared using sol-gel reaction in situ assisted with sonochemistry.

View Article and Find Full Text PDF

Organic-inorganic hybrid materials are explored for application as solid electrolytes for lithium-ion batteries. The material consists of a porous silica network, of which the pores are infiltrated by poly(ethylene oxide) and lithium perchlorate. The synthesis involves two steps: First, the inorganic backbone is created by the acid-catalyzed sol-gel synthesis of tetraethyl orthosilicate to ensure continuity of the backbone in three dimensions.

View Article and Find Full Text PDF

The widespread utilization of nail gels in the cosmetic and beauty industry, with an anticipated market value of US $65.8 Million by 2026, has raised concerns about health risks associated with conventional compositions containing monomeric acrylate reactive diluents. Technical challenges, such as oxygen inhibition leading to incomplete cure and hence tackiness after curing, further complicate their application process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!