Adenosine A(2A) Receptor Antagonists Do Not Disrupt Rodent Prepulse Inhibition: An Improved Side Effect Profile in the Treatment of Parkinson's Disease.

Parkinsons Dis

Department of In Vivo Pharmacology, Neuroscience, Merck Research Laboratories, 2015 Galloping Hill Road, K-15-1600, Kenilworth, NJ 07033, USA.

Published: August 2012

Parkinson's disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra. Current treatments for PD focus on dopaminergic therapies, including L-dopa and dopamine receptor agonists. However, these treatments induce neuropsychiatric side effects. Psychosis, characterized by delusions and hallucinations, is one of the most serious such side effects. Adenosine A(2A) receptor antagonism is a nondopaminergic treatment for PD with clinical and preclinical efficacy. The present studies assessed A(2A) antagonists SCH 412348 and istradefylline in rodent prepulse inhibition (PPI), a model of psychosis. Dopamine receptor agonists pramipexole (0.3-3 mg/kg), pergolide (0.3-3 mg/kg), and apomorphine (0.3-3 mg/kg) significantly disrupted PPI; ropinirole (1-30 mg/kg) had no effect; L-dopa (100-300 mg/kg) disrupted rat but not mouse PPI. SCH 412348 (0.3-3 mg/kg) did not disrupt rodent PPI; istradefylline (0.1-1 mg/kg) marginally disrupted mouse but not rat PPI. These results suggest that A(2A) antagonists, unlike dopamine agonists, have an improved neuropsychiatric side effect profile.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236485PMC
http://dx.doi.org/10.1155/2012/591094DOI Listing

Publication Analysis

Top Keywords

adenosine a2a
8
a2a receptor
8
disrupt rodent
8
rodent prepulse
8
prepulse inhibition
8
side profile
8
parkinson's disease
8
dopamine receptor
8
receptor agonists
8
neuropsychiatric side
8

Similar Publications

Therapeutic effects of CGS21680, a selective A receptor agonist, via BDNF-related pathways in R106W mutation Rett syndrome model.

Biomed Pharmacother

January 2025

College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Electronic address:

Rett syndrome (RTT) is a neurological disorder caused by a mutation in the X-linked methyl-CpG binding protein 2 (MECP2), leading to cognitive and motor skill regression. Therapeutic strategies aimed at increasing brain-derived neurotrophic factor (BDNF) levels have been reported; however, BDNF treatment has limitations, including the inability to penetrate the blood-brain barrier, a short half-life, and potential for adverse effects when administered via intrathecal injection, necessitating novel therapeutic approaches. In this study, we focused on the adenosine A receptor (AR), which modulates BDNF and its downstream pathways, and investigated the therapeutic potential of CGS21680, an AR agonist, through in vitro and in vivo studies using R106W RTT model.

View Article and Find Full Text PDF

We report the synthesis of a series of detergents with a lactobionamide polar head group and a tail containing four to seven perfluorinated carbon atoms. Critical micellar concentrations (CMCs) were determined using isothermal titration calorimetry (ITC) and surface tension (SFT) measurements, showing a progressive decrease from 27 mM to about 0.2 mM across the series.

View Article and Find Full Text PDF

Introduction: Adjunctive therapies to treat OFF episodes resulting from long-term levodopa treatment in Parkinson disease (PD) are hampered by safety and tolerability issues. Istradefylline offers an alternative mechanism (adenosine A2A receptor antagonist) and therefore potentially improved tolerability.

Methods: A systematic review of PD adjuncts published in 2011 was updated to include randomized controlled trials published from January 1, 2010-April 15, 2019.

View Article and Find Full Text PDF

generation of dual-target compounds using artificial intelligence.

iScience

January 2025

Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.

Drugs that interact with multiple therapeutic targets are potential high-value products in polypharmacology-based drug discovery, but the rational design remains a formidable challenge. Here, we present artificial intelligence (AI)-based methods to design the chemical structures of compounds that interact with multiple therapeutic target proteins. The molecular structure generation is performed by a fragment-based approach using a genetic algorithm with chemical substructures and a deep learning approach using reinforcement learning with stochastic policy gradients in the framework of generative adversarial networks.

View Article and Find Full Text PDF

Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!