Understanding the complex mechanisms by which infectious agents can disrupt behavior represents a major challenge. The Borna disease virus (BDV), a potential human pathogen, provides a unique model to study such mechanisms. Because BDV induces neurodegeneration in brain areas that are still undergoing maturation at the time of infection, we tested the hypothesis that BDV interferes with neurogenesis. We showed that human neural stem/progenitor cells are highly permissive to BDV, although infection does not alter their survival or undifferentiated phenotype. In contrast, upon the induction of differentiation, BDV is capable of severely impairing neurogenesis by interfering with the survival of newly generated neurons. Such impairment was specific to neurogenesis, since astrogliogenesis was unaltered. In conclusion, we demonstrate a new mechanism by which BDV might impair neural function and brain plasticity in infected individuals. These results may contribute to a better understanding of behavioral disorders associated with BDV infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3302287PMC
http://dx.doi.org/10.1128/JVI.05663-11DOI Listing

Publication Analysis

Top Keywords

borna disease
8
disease virus
8
human neural
8
bdv infection
8
bdv
7
virus infects
4
infects human
4
neural progenitor
4
progenitor cells
4
cells impairs
4

Similar Publications

Cutaneous leishmaniasis (CL) is a tropical disease that can cause chronic lesions and leave life-long scars, leading to social stigmatization and psychological disorders. Using growth factors and immunomodulatory agents that could accelerate wound healing and reduce the scar is highly demanded. Epidermal growth factor (EGF) plays an essential role in wound healing.

View Article and Find Full Text PDF

Neuropathology, pathomechanism, and transmission in zoonotic Borna disease virus 1 infection: a systematic review.

Lancet Infect Dis

January 2025

Department of Neuropathology, Medical Faculty, University of Augsburg, Augsburg, Germany; Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany. Electronic address:

Borna disease, which is a severe encephalitis that primarily affects horses and sheep, has been recognised for over two centuries. Borna disease virus 1 (BoDV-1) has been identified as a cause of a predominantly fatal encephalitis in humans. Little scientific data exist regarding the virus' transmission, entry portal, and excretion routes.

View Article and Find Full Text PDF

The rare zoonotic Borna disease virus (BDV) causes fatal neurological disease in various animals, with a high mortality rate exceeding 90% in central Europe. However, unlike most viruses, it establishes persistent infections within the host cell nucleus, hindering treatment. As successful BDV treatments remain elusive, the researchers turned to a computational approach, utilizing molecular docking, ADME/T, post-docking MMGBSA, MD simulation, DCCM, and PCA to identify promising phytochemical drug candidates targeting the BDV Nucleoprotein (PDB ID: 1N93).

View Article and Find Full Text PDF

Introduction: Borna disease virus 1 (BoDV-1) is an emerging zoonotic RNA virus that can cause severe acute encephalitis with high mortality. Currently, there are no effective countermeasures, and the potential risk of a future outbreak requires urgent attention. To address this challenge, the complete genome sequence of BoDV-1 was utilized, and immunoinformatics was applied to identify antigenic peptides suitable for vaccine development.

View Article and Find Full Text PDF

In amyotrophic lateral sclerosis (ALS), early mitochondrial dysfunction may contribute to progressive motor neuron loss. Remarkably, the ectopic expression of the Orthobornavirus bornaense type 1 (BoDV-1) X protein in mitochondria blocks apoptosis and protects neurons from degeneration. Therefore, this study examines the neuroprotective effects of X protein in an ALS mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!