Vascular-targeted therapies have shown promise as adjuvant cancer treatment. As these agents undergo clinical evaluation, sensitive imaging biomarkers are needed to assess drug target interaction and treatment response. In this study, dynamic contrast enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) were evaluated for detecting response of intracerebral 9 L gliosarcomas to the antivascular agent VEGF-Trap, a fusion protein designed to bind all forms of Vascular Endothelial Growth Factor-A (VEGF-A) and Placental Growth Factor (PGF). Rats with 9 L tumors were treated twice weekly for two weeks with vehicle or VEGF-Trap. DCE- and DW-MRI were performed one day prior to treatment initiation and one day following each administered dose. Kinetic parameters (K(trans), volume transfer constant; k(ep), efflux rate constant from extravascular/extracellular space to plasma; and v(p), blood plasma volume fraction) and the apparent diffusion coefficient (ADC) over the tumor volumes were compared between groups. A significant decrease in kinetic parameters was observed 24 hours following the first dose of VEGF-Trap in treated versus control animals (p < 0.05) and was accompanied by a decline in ADC values. In addition to the significant hemodynamic effect, VEGF-Trap treated animals exhibited significantly longer tumor doubling times (p < 0.05) compared to the controls. Histological findings were found to support imaging response metrics. In conclusion, kinetic MRI parameters and change in ADC have been found to serve as sensitive and early biomarkers of VEGF-Trap anti-vascular targeted therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4307830PMC
http://dx.doi.org/10.1002/nbm.1814DOI Listing

Publication Analysis

Top Keywords

kinetic parameters
8
dce dw-mri
4
dw-mri monitoring
4
monitoring vascular
4
vascular disruption
4
vegf-trap
4
disruption vegf-trap
4
treatment
4
vegf-trap treatment
4
treatment rat
4

Similar Publications

Effect of oxidation on finely segmented products of snakehead: Digestibility and microstructure.

Food Chem

December 2024

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

The present study was performed to investigate the digestive profiles of snakeheads' belly muscles (BM), tail muscles (TM) dorsal muscles (DM), and eye muscles (EM), with further explorations of relevant factors. Kinetic models were adopted to describe the digestion process with crucial parameters. BM showed the highest digestibility and digestive rate, followed by DM, TM, and EM.

View Article and Find Full Text PDF

Systemic bile acid homeostasis plays an important role in human health. In this study, a physiologically based kinetic (PBK) model that includes microbial bile acid deconjugation and intestinal bile acid reuptake via the apical sodium-dependent bile acid transporter (ASBT) was applied to predict the systemic plasma bile acid concentrations in human upon oral treatment with the antibiotic tobramycin. Tobramycin was previously shown to inhibit intestinal deconjugation and reuptake of bile acids and to affect bile acid homeostasis upon oral exposure of rats.

View Article and Find Full Text PDF

CFD-Based Determination of Optimal Design and Operating Conditions of a Fermentation Reactor Using Bayesian Optimization.

Biotechnol Bioeng

December 2024

Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA.

The efficiency of fermentation reactors is significantly impacted by gas dispersion and concentration distribution, which are influenced by the reactor's design and operating conditions. As the process scales up, optimizing these parameters becomes crucial due to the pronounced concentration gradients that can arise. This study integrates the kinetics of the fermentation process with hydrodynamic analysis using Bayesian optimization to efficiently determine the optimal reactor design and operating conditions.

View Article and Find Full Text PDF

In this research, 3-(trimethoxysilyl)propyl methacrylate (MPS) silane agent was applied to modify the extracted wheat straw (WS) cellulose as a natural biopolymer. Polyacrylonitrile (PAN) was attached to the MPS-modified WS (MPS-WS) via in-situ polymerization to form PAN-WS biocomposite. AO-WS amidoximated biocomposite adsorbent was synthesized through amidoxime reaction and the effects of different parameters including agitation speed, metal ion concentration, and adsorbent dosage on its efficiency of Pb(II) removal were investigated using the Taguchi experimental design method.

View Article and Find Full Text PDF

This study presents the synthesis of a green polymer-based nanocomposite by incorporating green CuO nanoparticles into polyaniline (PANI) for the adsorption of Pb (II) ions from contaminated water. The nanocomposite was extensively characterized using FTIR, XRD, BET, SEM-EDX, XPS, and Raman spectroscopy, both before and after Pb(II) adsorption. Optimization studies were performed to assess the effects of key parameters, including pH, adsorbent dosage, and initial ion concentration on the adsorption process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!