Tobacco mitochondrial small heat shock protein NtHSP24.6 adopts a dimeric configuration and has a broad range of substrates.

BMB Rep

School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea.

Published: December 2011

There is a broad range of different small heat shock proteins (sHSPs) that have diverse structural and functional characteristics. To better understand the functional role of mitochondrial sHSP, NtHSP24.6 was expressed in Escherichia coli with a hexahistidine tag and purified. The protein was analyzed by non-denaturing PAGE, chemical cross-linking and size exclusion chromatography and the H6NtHSP24.6 protein was found to form a dimer in solution. The in vitro functional analysis of H6NtHSP24.6 using firefly luciferase and citrate synthase demonstrated that this protein displays typical molecular chaperone activity. When cell lysates of E. coli were heated after the addition of H6NtHSP24.6, a broad range of proteins from 10 to 160 kD in size remained in the soluble state. These results suggest that NtHSP24.6 forms a dimer and can function as a molecular chaperone to protect a diverse range of proteins from thermal aggregation.

Download full-text PDF

Source
http://dx.doi.org/10.5483/bmbrep.2011.44.12.816DOI Listing

Publication Analysis

Top Keywords

broad range
12
small heat
8
heat shock
8
molecular chaperone
8
range proteins
8
tobacco mitochondrial
4
mitochondrial small
4
protein
4
shock protein
4
protein nthsp246
4

Similar Publications

Background: Health authorities worldwide have invested in digital technologies to establish robust information exchange systems for improving the safety and efficiency of medication management. Nevertheless, inaccurate medication lists and information gaps are common, particularly during care transitions, leading to avoidable harm, inefficiencies, and increased costs. Besides fragmented health care processes, the inconsistent incorporation of patient-driven changes contributes to these problems.

View Article and Find Full Text PDF

Field-Testing Measures Related to Youth Baseball Hitting Performance.

J Strength Cond Res

February 2025

Sports Medicine and Movement Laboratory, School of Kinesiology, Auburn University, Auburn Alabama.

Bordelon, NM, Agee, TW, Wasserberger, KW, Downs-Talmage, JL, Everhart, KM, and Oliver, GD. Field-testing measures related to youth baseball hitting performance. J Strength Cond Res 39(2): 210-216, 2025-The purpose of the study was to determine the relationship between field tests and youth hitting performance (batted-ball velocity).

View Article and Find Full Text PDF

Developing damping materials that are both optically transparent and mechanically robust, while offering broad frequency damping capacity, is a significant challenge─particularly for devices that require protection without compromising visual clarity. Conventional methods often either fail to maintain transparency or involve complex designs that are difficult to implement. Here, we present an ionogel system that integrates a physically cross-linked elastic copolymer network with a viscous ionic liquid.

View Article and Find Full Text PDF

Organoids are three-dimensional (3D) cell cultures derived from human pluripotent stem cells or adult stem cells that recapitulate the cellular heterogeneity, structure, and function of human organs. These microstructures are invaluable for biomedical research due to their ability to closely mimic the complexity of native tissues while retaining human genetic material. This fidelity to native organ systems positions organoids as a powerful tool for advancing our understanding of human biology and for enhancing preclinical drug testing.

View Article and Find Full Text PDF

Aerolysin Nanopore Electrochemistry.

Acc Chem Res

January 2025

Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!