Using resting-state functional magnetic resonance imaging, spontaneous low-frequency fluctuations in the blood oxygenation level-dependent signal were measured to investigate connectivity between key brain regions hypothesized to be differentially affected in dementia with Lewy bodies compared with Alzheimer's disease and healthy controls. These included connections of the hippocampus, because of its role in learning, and parietal and occipital areas involved in memory, attention and visual processing. Connectivity was investigated in 47 subjects aged 60 years and over: 15 subjects with dementia with Lewy bodies, 16 subjects with Alzheimer's disease and 16 control subjects. Subjects were scanned using a 3 Tesla magnetic resonance imaging system. The mean blood oxygenation level-dependent signal time series was extracted from seed regions in the hippocampus, posterior cingulate cortex, precuneus and primary visual cortex and correlated with all other brain voxels to determine functional connectivity. Both subjects with dementia with Lewy bodies and Alzheimer's disease showed greater connectivity than control subjects. Compared with controls, the dementia with Lewy bodies group had greater connectivity between the right posterior cingulate cortex and other brain areas. In dementia with Lewy bodies, there were no significant differences in hippocampal connectivity compared with controls, but in Alzheimer's disease left hippocampal connectivity was greater compared with controls. There were no significant differences between groups for precuneus or primary visual cortex connectivity. No seed regions showed significantly less connectivity in subjects with dementia with Lewy bodies or Alzheimer's disease compared with controls. We found greater connectivity with the posterior cingulate in dementia with Lewy bodies and with the hippocampus in Alzheimer's disease. Consistent with the known relative preservation of memory in dementia with Lewy bodies compared with Alzheimer's disease, hippocampal connectivity was not found to be greater in dementia with Lewy bodies. Importantly, while metabolic imaging shows functional change in primary visual cortex in dementia with Lewy bodies, which is hypothesized to account for visual hallucinations, we found connectivity with this region to be unaffected. This implicates areas beyond visual sensory input level in the visual symptoms and visual-perceptual dysfunction seen in dementia with Lewy bodies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708629 | PMC |
http://dx.doi.org/10.1093/brain/awr327 | DOI Listing |
Alzheimers Dement
January 2025
Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.
Introduction: We aimed to compare gait between individuals with Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and cognitively unimpaired (CU) individuals and to evaluate the association between gait and regional amyloid beta (Aβ) burden in AD and DLB.
Methods: We included 420 participants (70 AD, 70 DLB, 280 CU) in the Mayo Clinic Study of Aging (MCSA). Gait was assessed using a pressure-sensor walkway.
J Alzheimers Dis
January 2025
Comprehensive Center for Brain Health, Department of Neurology, Miller School of Medicine, University of Miami, Boca Raton, FL, USA.
Background: Declining physical functionality is an indicator of cognitive impairment, distinguishing normal cognition (NC) from dementia. Whether this extends to pre-dementia stages is unclear.
Objective: Assess physical performance patterns, evaluate relationships with imaging biomarkers, and identify specific measures distinguishing NC, subjective cognitive decline (SCD) and mild cognitive impairment (MCI).
Alzheimers Res Ther
January 2025
Department of Neurology, University Medical Center Rostock, 18147, Rostock, Germany.
Background: Degeneration of the basal forebrain cholinergic system is a hallmark feature shared by Alzheimer's disease (AD) and Lewy body disease (LBD) whereas hippocampus atrophy is more specifically related to AD. We aimed to investigate the relationship between basal forebrain and hippocampus atrophy, cognitive decline, and neuropathology in a large autopsy sample.
Methods: Data were obtained from the National Alzheimer's Coordinating Center (NACC).
Mol Psychiatry
January 2025
Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy.
Lysosomal storage disorders characterized by defective heparan sulfate (HS) degradation, such as Mucopolysaccharidosis type IIIA-D (MPS-IIIA-D), result in neurodegeneration and dementia in children. However, dementia is preceded by severe autistic-like behaviours (ALBs), presenting as hyperactivity, stereotypies, social interaction deficits, and sleep disturbances. The absence of experimental studies on ALBs' mechanisms in MPS-III has led clinicians to adopt symptomatic treatments, such as antipsychotics, which are used for non-genetic neuropsychiatric disorders.
View Article and Find Full Text PDFLancet Neurol
February 2025
Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada; Department of Cognitive Neurology, St Joseph's Health Care London, London, ON, Canada. Electronic address:
Background: No treatments exist for apathy in people with frontotemporal dementia. Previously, in a randomised double-blind, placebo-controlled, dose-finding study, intranasal oxytocin administration in people with frontotemporal dementia improved apathy ratings on the Neuropsychiatric Inventory over 1 week and, in a randomised, double-blind, placebo-controlled, crossover study, a single dose of 72 IU oxytocin increased blood-oxygen-level-dependent signal in limbic brain regions. We aimed to determine whether longer treatment with oxytocin improves apathy in people with frontotemporal dementia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!