Evaluation of diffusion coefficients of pure compounds in air is of great interest for many diverse industrial and air quality control applications. In this communication, a QSPR method is applied to predict the molecular diffusivity of chemical compounds in air at 298.15K and atmospheric pressure. Four thousand five hundred and seventy nine organic compounds from broad spectrum of chemical families have been investigated to propose a comprehensive and predictive model. The final model is derived by Genetic Function Approximation (GFA) and contains five descriptors. Using this dedicated model, we obtain satisfactory results quantified by the following statistical results: Squared Correlation Coefficient=0.9723, Standard Deviation Error=0.003 and Average Absolute Relative Deviation=0.3% for the predicted properties from existing experimental values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2011.11.021 | DOI Listing |
Environ Res
January 2025
Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil. Electronic address:
This study provides comprehensive overview of the current level, sources and human exposure risk to hazardous polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in South American outdoor air. Research documents were obtainable for only 6 countries within the target period (2014 - 2024). For all contaminants, urban concentrations exceeded that of rural/remote locations.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China. Electronic address:
α-Terpineol and 1,8-cineole are two important compounds in essential oils. This study developed an efficient method to recover α-terpineol from model oil (MO) based on association extraction by in situ formations of deep eutectic solvent (DES) between α-terpineol and some quaternary ammonium salts (QASs) by hydrogen-bond (HB) interaction. Such interaction could be broken almost completely by the introduction of water, due to the stronger HB interaction between water and QASs, which could release α-terpineol by liquid-liquid separation and save the organic solvents consumption.
View Article and Find Full Text PDFSci Total Environ
January 2025
Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382 Wilhelmshaven, Germany.
Microplastics (MP) are known to be ubiquitous. The pathways and fate of these contaminants in the marine environment are receiving increasing attention, but still knowledge gaps exist. In particular, the link between mass-based MP quantification and oceanographic parameters is often lacking.
View Article and Find Full Text PDFMolecules
January 2025
Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA.
Emerging contaminants (ECs), encompassing pharmaceuticals, personal care products, pesticides, and industrial chemicals, represent a growing threat to ecosystems and human health due to their persistence, bioaccumulation potential, and often-unknown toxicological profiles. Addressing these challenges necessitates advanced analytical tools capable of detecting and quantifying trace levels of ECs in complex environmental matrices. This review highlights the pivotal role of mass spectrometry (MS) in monitoring ECs, emphasizing its high sensitivity, specificity, and versatility across various techniques such as Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-Mass Spectrometry (LC-MS), and High-Resolution Mass Spectrometry (HR-MS).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Military Institute of Chemistry and Radiometry, gen A. Chruściela "Montera" 105, 00-910 Warsaw, Poland.
One of the main objectives of the ion mobility spectrometry (IMS) technique is to reduce moisture in detection systems, which causes the formation of ion clusters and ion water and a reduction in formed clusters' activity. Thus, one of the methods limiting moisture in a sampling injection system is to use hydrophobic polymeric membranes. The use of membranes with high permeability relative to the analysed organic compounds is required, including toxic agents in air (TAAs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!