A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rupture of pluronic micelles by di-methylated β-cyclodextrin is not due to polypseudorotaxane formation. | LitMetric

Rupture of pluronic micelles by di-methylated β-cyclodextrin is not due to polypseudorotaxane formation.

J Phys Chem B

Departamento de Química Física, Facultad de Farmacia, Universidad de Salamanca, 37008 Salamanca, Spain.

Published: February 2012

Spectroscopic measurements (uv/vis absorbance and fluorescence) and time-resolved small-angle neutron scattering experiments (TR-SANS) were used to follow the breakdown of Pluronic micelles by heptakis(2,6-di-O-methyl)-β-cyclodextrin (DIMEB) over time in order to elucidate the mechanism of micellar rupture, generally attributed to polypseudotorotaxane (PR) formation between the cyclodextrin and the central hydrophobic PPO block. The spectroscopic measurements with two different probes (methyl orange and nile red) suggest that very rapid changes (on the order of seconds) take place when mixing DIMEB with F127 Pluronic and that no displacement of the probe from the cyclodextrin cavity occurs, which is in disagreement with PR formation. TR-SANS measurements demonstrate for the first time that the micelles are broken down in less than 100 ms, which categorically rules out PR formation as the mechanism of rupture. In addition, the same mechanism is demonstrated with other Pluronics, P85 and P123. In the latter case, after micellar rupture, lamellar structures are seen to form over a longer period of time, thus suggesting that after the instantaneous micellar disruption, further, longer-scale rearrangements are not excluded.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp210439nDOI Listing

Publication Analysis

Top Keywords

pluronic micelles
8
spectroscopic measurements
8
micellar rupture
8
rupture
4
rupture pluronic
4
micelles di-methylated
4
di-methylated β-cyclodextrin
4
β-cyclodextrin polypseudorotaxane
4
formation
4
polypseudorotaxane formation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!