Present studies have focused on a novel cyanide antidotal system, on the coencapsulation of a new sulfur donor DTO with rhodanese within sterically stabilized liposomes. The optimal lipid composition for coencapsulation of DTO with rhodanese is the combination of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, cholesterol, cationic lipid (DOTAP), and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] ammonium salt (with molar ratios of 82.7 : 9.2 : 3.0 : 5.1). With the optimized compositions, prophylactic and therapeutic in vivo efficacy studies were carried out in a mice model. When DTO was coencapsulated with rhodanese and thiosulfate the prophylactic antidotal protection was 4.9 × LD(50). Maximum antidotal protection against cyanide intoxication (15 × LD(50)) was achieved with coencapsulated rhodanese and DTO/thiosulfate in combination with sodium nitrite. When applied therapeutically, 100% survival rate (6/6) was achieved at 20 mg/kg cyanide doses with the encapsulated DTO-rhodanese-thiosulfate antidotal systems with and without sodium nitrite. These data are indicating that the appropriately formulated DTO is a promising sulfur donor for cyanide antagonism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236500PMC
http://dx.doi.org/10.1155/2011/928626DOI Listing

Publication Analysis

Top Keywords

sulfur donor
12
lipid composition
8
vivo efficacy
8
efficacy studies
8
cyanide intoxication
8
dto rhodanese
8
coencapsulated rhodanese
8
antidotal protection
8
sodium nitrite
8
cyanide
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!