In situ Co K-edge quick-EXAFS (QEXAFS) coupled with temperature-programmed oxidation as well as ex situ XAFS was applied to investigating the mechanism for enhancing the dispersion of Co(3)O(4) nanoparticles in a calcined Co/SiO(2) Fischer-Tropsch synthesis catalyst prepared by adding triethylene glycol (TEG) to a Co(NO(3))(2).6H(2)O impregnating solution. Ex situ Co K-edge XAFS indicated that, regardless of whether the catalysts were prepared with or without using TEG, the hexaaqua Co (II) complex was formed in impregnated samples which then underwent the dehydration process to some extent during the subsequent drying step at 393 K. In situ QEXAFS and ex situ EXAFS results also indicated that small oxide clusters were formed in the TEG-modified catalyst calcined at ~400-470 K which interacted with polymer species derived from TEG. Since the Fischer-Tropsch synthesis activity of the TEG-modified catalyst increased with an increase in the calcination temperature in a similar temperature range [Koizumi et al. (2011), Appl. Catal. A, 395, 138-145], it was suggested that such an interaction enables the clusters to be distributed over the support surface uniformly, resulting in enhancing their dispersion. After combustion of polymer species, Co(3)O(4)-like species were formed, and agglomeration of the Co(3)O(4)-like species at high calcination temperatures was suppressed by the addition of TEG to the impregnating solution. It was speculated that the addition of TEG induced the formation of some surface silicate which worked as an anchoring site for Co(3)O(4) and Co(0) nanoparticles during calcination and H(2) reduction, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0909049511041240DOI Listing

Publication Analysis

Top Keywords

enhancing dispersion
12
fischer-tropsch synthesis
12
impregnating solution
12
mechanism enhancing
8
dispersion co3o4
8
co3o4 nanoparticles
8
co/sio2 fischer-tropsch
8
synthesis catalyst
8
situ k-edge
8
teg-modified catalyst
8

Similar Publications

A nanocomposite consisting of gold nanoparticles (AuNPs), poly(diallyldimethylammonium chloride) (PDDA), and reduced graphene oxide (rGO) was fabricated by a two-step chemical reduction method. Firstly, a PDDA-rGO composite was prepared by using hydrazine hydrate as a reducing agent. Subsequently, the AuNP-PDDA-rGO composite was prepared in ethylene glycol with PDDA-rGO and HAuCl as raw materials using sodium citrate as a reduction agent.

View Article and Find Full Text PDF

Eggshell-derived particle composites with epoxy resin for enhanced radiation shielding applications.

Radiat Environ Biophys

December 2024

Faculty of Radiological Technology, Rangsit University, Pathumthani, 12000, Thailand.

This study explores the development and efficacy of eggshell-derived particle composites with epoxy resin for enhanced radiation shielding applications. Eggshells, primarily composed of calcium carbonate, were processed into particles of three sizes: small, medium, and large. These particles were incorporated into epoxy resin at a 50% weight ratio and characterized using a Laser Particle Size Distribution Analyzer.

View Article and Find Full Text PDF

Dye-laden wastewater poses a significant environmental and health threat. This study investigated the potential of green-synthesized zinc oxide nanoparticles (ZnO NPs), derived from Padina pavonica brown algae extract, for the removal of methylene blue (MB) dye. The hypothesis was that utilizing algal extract for ZnO NP synthesis would enhance adsorption capacity and photocatalytic activity for dye removal.

View Article and Find Full Text PDF

Improving highway bases is the most crucial step that enhances pavements' performance and long-term durability. Lime and Portland cement are commonly used in soil stabilization endeavors. Nevertheless, the substantial carbon emissions associated with cement and lime manufacturing have led to a growing interest in researching environmentally friendly additives.

View Article and Find Full Text PDF

Ultrasmall-scale semiconductor devices (≤5 nm) are advancing technologies, such as artificial intelligence and the Internet of Things. However, the further scaling of these devices poses critical challenges, such as interface properties and oxide quality, particularly at the high-/semiconductor interface in metal-oxide-semiconductor (MOS) devices. Existing interlayer (IL) methods, typically exceeding 1 nm thickness, are unsuitable for ultrasmall-scale devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!