The aim of this study was to create a comprehensive mouse model of the metabolic syndrome by crossing aromatase-deficient (ArKO) mice with apolipoprotein E-deficient (ApoE(-/-)) mice. Successive crossbreeding of ArKO with ApoE(-/-)-deficient mice generated double knockout, MetS-Tg mice. The phenotypic characteristics of the MetS-Tg mice were assessed at 3, 6, and 12 mo of age and compared with age- and sex-matched wild-type (WT) controls. Blood pressure and heart rate were recorded by a noninvasive, computerized tail-cuff system. Oral glucose and intraperitoneal insulin tolerance tests were performed. Serum cholesterol levels were measured by a combined quantitative colorimetric assay. Plasma adiponectin, C-reactive protein (CRP), insulin, interleukin-6 (IL-6), leptin, resistin, and tumor necrosis factor-α (TNF-α) were measured by multiplexed ELISA. MetS-Tg mice displayed significantly increased body weight, central obesity, and elevated blood pressure at all three ages compared with WT mice. Elevated serum cholesterol was associated with higher triglycerides and LDL/VLDL cholesterol particles and was accompanied by a decrease in HDL and histological evidence of fatty liver. MetS-Tg mice of all ages showed impaired glucose tolerance. At 12 mo, MetS-Tg mice had elevated plasma levels of CRP, IL-6, leptin, and TNF-α, but resistin levels were largely unchanged. We now report that this combination of gene knockouts produces a novel strain of mice that display the diverse clinical features of the metabolic syndrome, including central obesity, progressive hypertension, an adverse serum lipid profile, fatty liver, glucose intolerance, insulin resistance, and evidence of an inflammatory state.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00222.2011DOI Listing

Publication Analysis

Top Keywords

mets-tg mice
20
metabolic syndrome
12
mice
11
mouse model
8
model metabolic
8
double knockout
8
blood pressure
8
serum cholesterol
8
il-6 leptin
8
central obesity
8

Similar Publications

There is extensive evidence that walnut consumption is protective against cardiovascular disease and diabetes in the healthy population, but the beneficial effects of walnut consumption in individuals with the metabolic syndrome (MetS) remain uncertain. We compared a range of cardio-metabolic traits and related tissue gene expression associated with 21 weeks of dietary walnut supplementation in a mouse model of MetS (MetS-Tg) and wild-type (WT) mice ( 10 per genotype per diet, equal males and females). Compared to standard diet, walnuts did not significantly alter food consumption or body weight trajectory of either MetS-Tg or WT mice.

View Article and Find Full Text PDF

The aim of this study was to create a comprehensive mouse model of the metabolic syndrome by crossing aromatase-deficient (ArKO) mice with apolipoprotein E-deficient (ApoE(-/-)) mice. Successive crossbreeding of ArKO with ApoE(-/-)-deficient mice generated double knockout, MetS-Tg mice. The phenotypic characteristics of the MetS-Tg mice were assessed at 3, 6, and 12 mo of age and compared with age- and sex-matched wild-type (WT) controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!