Background: Contamination of bacteria in large-scale yeast fermentations is a serious problem and a threat to the development of successful biofuel production plants. Huge research efforts have been spent in order to solve this problem, but additional ways must still be found to keep bacterial contaminants from thriving in these environments. The aim of this project was to develop process conditions that would inhibit bacterial growth while giving yeast a competitive advantage.

Results: Lactic acid bacteria are usually considered to be the most common contaminants in industrial yeast fermentations. Our observations support this view but also suggest that acetic acid bacteria, although not so numerous, could be a much more problematic obstacle to overcome. Acetic acid bacteria showed a capacity to drastically reduce the viability of yeast. In addition, they consumed the previously formed ethanol. Lactic acid bacteria did not show this detrimental effect on yeast viability. It was possible to combat both types of bacteria by a combined addition of NaCl and ethanol to the wood hydrolysate medium used. As a result of NaCl + ethanol additions the amount of viable bacteria decreased and yeast viability was enhanced concomitantly with an increase in ethanol concentration. The successful result obtained via addition of NaCl and ethanol was also confirmed in a real industrial ethanol production plant with its natural inherent yeast/bacterial community.

Conclusions: It is possible to reduce the number of bacteria and offer a selective advantage to yeast by a combined addition of NaCl and ethanol when cultivated in lignocellulosic medium such as wood hydrolysate. However, for optimal results, the concentrations of NaCl + ethanol must be adjusted to suit the challenges offered by each hydrolysate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3284421PMC
http://dx.doi.org/10.1186/1754-6834-4-59DOI Listing

Publication Analysis

Top Keywords

nacl ethanol
20
acid bacteria
16
yeast fermentations
12
addition nacl
12
bacterial contaminants
8
process conditions
8
yeast
8
bacteria
8
lactic acid
8
acetic acid
8

Similar Publications

Quinoa is recognized for its nutritional and pharmacological properties. This study aims to investigate the impact of salt stress induced by varying concentrations of sodium chloride (NaCl) on the production of phenolic compounds and their biological activities in different quinoa accessions. Leaves from three quinoa accessions (Q4, Q24, and Q45) cultivated under increasing NaCl treatments were subjected to chemical analysis using ethanol and water extract.

View Article and Find Full Text PDF

Desalting of oligonucleotides through precipitation for mass spectrometric analysis.

Nucleosides Nucleotides Nucleic Acids

January 2025

Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada.

Contamination of sodium ions in oligonucleotides often causes issues in mass spectrometric analysis. This study investigated the efficiency of the combination of ammonium acetate and alcohol in desalting oligonucleotides. It was found that oligonucleotide samples containing up to 4 M NaCl can be effectively desalted through precipitation with ethanol or isopropanol in the presence of 1 or 5 M ammonium acetate.

View Article and Find Full Text PDF

Loop-mediated isothermal amplification (LAMP) is a detection method widely used in pathogen detection and clinical diagnosis. Nevertheless, it is highly constrained by thermal stability, catalytic activity, and resistance to inhibitors of Bst DNA polymerase. In this study, a novel DNA polymerase was characterized from Clostridium thermocellum, exhibiting potential in LAMP detection.

View Article and Find Full Text PDF

Sulfidogenic bacteria cause numerous issues in the oil industry since they produce sulfide, corroding steel equipment, reducing oil quality, and worsening the environmental conditions in oil fields. The purpose of this work was to isolate and taxonomically identify the sulfidogenic bacteria responsible for the corrosion of steel equipment at the Karazhanbas oil field (Kazakhstan). In this study, we characterized five sulfidogenic strains of the genera , , and isolated from the formation water of the Karazhanbas oil field (Kazakhstan).

View Article and Find Full Text PDF

Fabrication of ethylcellulose/technical alkaline lignin composite film with high anticorrosion performance in NaCl, HCl, and KOH solutions.

Int J Biol Macromol

December 2024

Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China. Electronic address:

Technical alkaline lignin (TAL)-based composite films have been developed for anti-corrosion applications, during which one-component solvents, including acetone and ethanol, were employed. The poor solubility of TAL in the abovementioned solvents undoubtedly resulted in inhomogeneous surface micromorphology and the consequent unstable performance. The present study provides a series of ethylcellulose/TAL (EC/TAL) composite films with uniform surface microstructure by using the 1,4-dioxane/water binary solvent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!