CD7 is a cell-surface molecule, expressed on T lymphocytes and NK cells, which functions as a costimulatory receptor for T cell proliferation. SECTM1 has been proposed as a ligand for CD7. However, the expression pattern of this molecule in human immune cells and role in human T cell function remain unclear. In the present study, using human rSECTM1, we demonstrate that SECTM1 strongly costimulates CD4 and CD8 T cell proliferation and induces IFN-γ production, likely via a CD7-dependent mechanism. In addition, SECTM1 synergizes with suboptimal anti-CD28 to strongly augment T cell functions. We found a robust induction of IL-2 production when SECTM1 and anti-CD28 signals were present with TCR ligation. Furthermore, addition of SECTM1 into a MLR significantly enhanced proliferation of alloantigen-activated T cells, whereas blockade of SECTM1 inhibited T cell proliferation in a two-way MLR assay. Simultaneously blocking the effect of SECTM1, along with CTLA-4/Fc, diminishes two-way MLR. Finally, we demonstrated that expression of SECTM1 is not detected in monocytes and imMoDCs at the protein level. However, it is strongly induced by IFN-γ in monocytes and imMoDCs, and this induction is STAT1-dependent. These results indicate that SECTM1 is a broadly expressed, IFN-γ-inducible molecule, which functions as a potent costimulatory ligand for T cell activation and is synergistic with anti-CD28.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289399PMC
http://dx.doi.org/10.1189/jlb.1011498DOI Listing

Publication Analysis

Top Keywords

cell proliferation
16
sectm1
9
human cell
8
addition sectm1
8
two-way mlr
8
monocytes immodcs
8
cell
7
proliferation
5
k12/sectm1 interferon-γ
4
interferon-γ regulated
4

Similar Publications

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

Background And Aims: Maternal obesity increases the risk of the paediatric form of metabolic dysfunction-associated steatotic liver disease (MASLD), affecting up to 30% of youth, but the developmental origins remain poorly understood.

Methods: Using a Japanese macaque model, we investigated the impact of maternal Western-style diet (mWSD) or chow diet followed by postweaning WSD (pwWSD) or chow diet focusing on bile acid (BA) homeostasis and hepatic fibrosis in livers from third-trimester fetuses and 3-year-old juvenile offspring.

Results: Juveniles exposed to mWSD had increased hepatic collagen I/III content and stellate cell activation in portal regions.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is one of the most common and highly lethal cancers worldwide. RIO kinase 1 (RIOK1), a protein kinase/ATPase that plays a key role in regulating translation and ribosome assembly, is associated with a variety of malignant tumors. However, the role of RIOK1 in HCC remains largely unknown.

View Article and Find Full Text PDF

TBCK (TBC1 Domain-Containing Kinase) encodes a protein playing a role in actin organization and cell growth/proliferation via the mTOR signaling pathway. Deleterious biallelic TBCK variants cause Hypotonia, infantile, with psychomotor retardation and characteristic facies 3. We report on three affected sibs, also displaying cardiac malformations.

View Article and Find Full Text PDF

Objective: Polycystic ovary syndrome (PCOS) is a diverse condition with an unknown cause. The precise mechanism underlying ovulatory abnormalities in PCOS remains unclear. It is widely believed that malfunction of granulosa cells is the primary factor contributing to aberrant follicular formation in PCOS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!