Bispecific Abs hold great potential for immunotherapy of malignant diseases. Because the first components of this new drug class are now entering clinical trials, all aspects of their mode of action should be well understood. Several studies proved that CD8(+) and CD4(+) effector T cells can be successfully redirected and activated against tumor cells by bispecific Abs both in vitro and in vivo. To our knowledge, this study provides the first evidence that bispecific Abs can also redirect and activate regulatory T cells against a surface Ag, independently of their TCR specificity. After cross-linking, via a bispecific Ab, redirected regulatory T cells upregulate the activation markers CD69 and CD25, as well as regulatory T cell-associated markers, like CTLA-4 and FOXP3. The activated regulatory T cells secrete the immunosuppressive cytokine IL-10, but, in contrast to CD8(+) and CD4(+) effector T cells, almost no inflammatory cytokines. In addition, the redirected regulatory T cells are able to suppress effector functions of activated autologous CD4(+) T cells both in vitro and in vivo. Therefore, the potential risk for activation of regulatory T cells should be taken into consideration when bispecific Abs are applied for the treatment of malignant diseases. In contrast, an Ag/tissue-specific redirection of regulatory T cells with bispecific Abs holds great potential for the treatment of autoimmune diseases and graft rejection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1101760 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Dermatology, Dongshan Hospital, Guofengyuan Building, Xuezi Avenue, Meijiang District, Meizhou, 514011, Guangdong, China.
Platelet-rich plasma (PRP) holds promising prospects for the treatment of skin photoaging. This study aims to unravel the mechanism underlying PRP's anti-photoaging properties. Partial skin of rats was irradiated with ultraviolet (UV) and injected with PRP, and the skin appearance, pathological state, and aging conditions were determined.
View Article and Find Full Text PDFMol Genet Genomics
January 2025
Department of Emergency, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
Acute kidney injury (AKI) is one of the most serious and common complications in the course of sepsis, known for its poor prognosis and high mortality rate. Recently, ferroptosis, as a newly discovered regulatory cell death, might be closely associated with the progression of AKI. METTL14 is a writer of RNA m6A, an abundant epigenetic modification in transcriptome with broad function.
View Article and Find Full Text PDFElife
January 2025
The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.
encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction.
View Article and Find Full Text PDFClin Transl Med
January 2025
Vascular Research Laboratory, IIS-Fundación Jiménez Díaz, Madrid, Spain.
Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids and leukocytes within the arterial wall. By studying the aortic transcriptome of atherosclerosis-prone apolipoprotein E (ApoE) mice, we aimed to identify novel players in the progression of atherosclerosis.
Methods: RNA-Seq analysis was performed on aortas from ApoE and wild-type mice.
FASEB J
January 2025
August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
The kinases AMPK, and mTOR as part of either mTORC1 or mTORC2, are major orchestrators of cellular growth and metabolism. Phosphorylation of mTOR Ser1261 is reportedly stimulated by both insulin and AMPK activation and a regulator of both mTORC1 and mTORC2 activity. Intrigued by the possibilities that Ser1261 might be a convergence point between insulin and AMPK signaling in skeletal muscle, we investigated the regulation and function of this site using a combination of human exercise, transgenic mouse, and cell culture models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!