Molecular links between cellular senescence, longevity and age-related diseases - a systems biology perspective.

Aging (Albany NY)

The Shraga Segal Department of Microbiology and Immunology, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva, Israel.

Published: December 2011

The role of cellular senescence (CS) in age-related diseases (ARDs) is a quickly emerging topic in aging research. Our comprehensive data mining revealed over 250 genes tightly associated with CS. Using systems biology tools, we found that CS is closely interconnected with aging, longevity and ARDs, either by sharing common genes and regulators or by protein-protein interactions and eventually by common signaling pathways. The most enriched pathways across CS, ARDs and aging-associated conditions (oxidative stress and chronic inflammation) are growth-promoting pathways and the pathways responsible for cell-extracellular matrix interactions and stress response. Of note, the patterns of evolutionary conservation of CS and cancer genes showed a high degree of similarity, suggesting the co-evolution of these two phenomena. Moreover, cancer genes and microRNAs seem to stand at the crossroad between CS and ARDs. Our analysis also provides the basis for new predictions: the genes common to both cancer and other ARD(s) are highly likely candidates to be involved in CS and vice versa. Altogether, this study shows that there are multiple links between CS, aging, longevity and ARDs, suggesting a common molecular basis for all these conditions. Modulating CS may represent a potential pro-longevity and anti-ARDs therapeutic strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273898PMC
http://dx.doi.org/10.18632/aging.100413DOI Listing

Publication Analysis

Top Keywords

cellular senescence
8
age-related diseases
8
systems biology
8
aging longevity
8
longevity ards
8
cancer genes
8
ards
6
genes
5
molecular links
4
links cellular
4

Similar Publications

In cells, the term "cellular aging" represents a collection of biological changes that can precede the proliferative senescence states. Cells more resistant to proliferative senescence, such as the ones found in the basal layer of the epidermis, may also exhibit these aging patterns. Therefore, cellular aging events could be induced by endogenous signals named here as cellular aging triggers (CATs) components.

View Article and Find Full Text PDF

Chronic kidney disease and aging: dissecting the p53/p21 pathway as a therapeutic target.

Biogerontology

December 2024

Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Chronic kidney diseases (CKD) are a group of multi-factorial disorders that markedly impair kidney functions with progressive renal deterioration. Aging contributes to age-specific phenotypes in kidneys, which undergo several structural and functional alterations, such as a decline in regenerative capacity and increased fibrosis, inflammation, and tubular atrophy, all predisposing them to disease and increasing their susceptibility to injury while impeding their recovery. A central feature of these age-related processes is the activation of the p53/p21 pathway signaling.

View Article and Find Full Text PDF

Arachidonoylethanolamide promotes cellular senescence in a human glioblastoma cell line.

Biochem Biophys Res Commun

December 2024

Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma Del Estado de México, Paseo Tollocan esq, Jesús Carranza s/n, Col. Moderna de la Cruz, Toluca, Mexico, CP 50180. Electronic address:

Glioblastomas are the most common and deadly primary brain tumors, with high mortality rates despite aggressive therapies. Cellular senescence is important for cancer development, as it limits tumor progression; however, it may also stimulate inflammation at the tumor microenvironment, promoting tumor development. Hence, modulation of senescence is an important target for cancer therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!