A facile route to reassemble titania nanoparticles into ordered chain-like networks on substrate.

Macromol Rapid Commun

Polymer and Composites Division, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Zhenhai District, Ningbo, Zhejiang Province, 315201, P. R. China.

Published: February 2012

A facile route to reassemble titania nanoparticles within the titania-block copolymer composite films has been developed. The titania nanoparticles templated by the amphiphilic block copolymer of poly(styrene)-block-poly (ethylene oxide) (PS-b-PEO) were frozen in the continuous PS matrix. Upon UV exposure, the PS matrix was partially degraded, allowing the titania nanoparticles to rearrange into chain-like networks exhibiting a closer packing. The local structures of the Titania chain-like networks were investigated by both AFM and SEM; the lateral structures and vertical structures of the films were studied by GISAXS and X-ray reflectivity respectively. Both the image analysis and X-ray scattering characterization prove the reassembly of the titania nanoparticles after UV exposure. The mechanism of the nanoparticle assembly is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201100638DOI Listing

Publication Analysis

Top Keywords

titania nanoparticles
20
chain-like networks
12
facile route
8
route reassemble
8
reassemble titania
8
titania
6
nanoparticles
5
nanoparticles ordered
4
ordered chain-like
4
networks substrate
4

Similar Publications

Introduction: Current intestinal models lack the mechanical forces present in the physiological environment, limiting their reliability for nanotoxicology studies. Here, we developed an enhanced Caco-2/HT29-MTX-E12 co-culture model incorporating orbital mechanical stimulation to better replicate intestinal conditions and investigate nanoparticle interactions.

Methods: We established co-cultures under static and dynamic conditions, evaluating their development through multiple approaches including barrier integrity measurements, gene expression analysis, and confocal microscopy.

View Article and Find Full Text PDF

Bee population decline is associated with various stressors, including exposure to pollutants. Among these, titanium dioxide (TiO), an emerging nanoparticle (NP) pollutant, potentially affects living organisms, including bees. This study evaluates the impact of TiO NPs ingestion (1.

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium dioxide (TiO NC), synthesized by a simple hydrothermal method, on the photodegradation efficiency of three different classes of emerging environmental pollutants: phenol, pesticides (methomyl), and drugs (sodium diclofenac). Experiments were conducted to assess the influence of the water matrix on treatment efficiency by using ultrapure water and stormwater (basic) collected from an urban drainage system as matrices.

View Article and Find Full Text PDF

This study investigated the effects of various titanium nanoparticles (TiONPs) on the structure, function, and trophic levels of the wheat rhizobiome. In contrast to the typically toxic effects of small nanoparticles (~10 nm), this research focused on molecular TiO and larger nanoparticles, as follows: medium-sized (68 nm, NPs1) and large (>100 nm, NPs2). The results demonstrated significant yet diverse impacts of different TiO forms on the rhizosphere microbiota.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!