Skeletogenesis and bone fracture healing involve endochondral ossification, a process during which cartilaginous primordia are gradually replaced by bone tissue. In line with a role for cyclooxygenase-2 (COX-2) in the endochondral ossification process, non-steroidal anti-inflammatory drugs (NSAIDs) were reported to negatively affect bone fracture healing due to impaired osteogenesis. However, a role for COX-2 activity in the chondrogenic phase of endochondral ossification has not been addressed before. We show that COX-2 activity fulfils an important regulatory function in chondrocyte hypertrophic differentiation. Our data reveal essential cross-talk between COX-2 and bone morphogenic protein-2 (BMP-2) during chondrocyte hypertrophic differentiation. BMP-2 mediated chondrocyte hypertrophy is associated with increased COX-2 expression and pharmacological inhibition of COX-2 activity by NSAIDs (e.g., Celecoxib) decreases hypertrophic differentiation in various chondrogenic models in vitro and in vivo, while leaving early chondrogenic development unaltered. Our findings demonstrate that COX-2 activity is a novel factor partaking in chondrocyte hypertrophy in the context of endochondral ossification and these observations provide a novel etiological perspective on the adverse effects of NSAIDs on bone fracture healing and have important implications for the use of NSAIDs during endochondral skeletal development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.22203/ecm.v022a31 | DOI Listing |
Redox Rep
December 2025
Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
Objectives: Bone remodeling imbalance contributes to osteoporosis. Though current medications enhance osteoblast involvement in bone formation, the underlying pathways remain unclear. This study was aimed to explore the pathways involved in bone formation by osteoblasts, we investigate the protective role of glycolysis and N6-methyladenosine methylation (m6A) against oxidative stress-induced impairment of osteogenesis in MC3T3-E1 cells.
View Article and Find Full Text PDFBMC Musculoskelet Disord
December 2024
Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
Background: The purpose of this study was to report the clinical and psychological outcomes of using a locking compression plate (LCP) as a sequential external fixator following the distraction phase in the treatment of tibial bone defects caused by fracture-related infection (FRI).
Methods: We retrospectively analyzed the clinical records and consecutive X-ray images of patients with tibial bone defects who were treated with an LCP as a sequential external fixator following the distraction phase, between June 2017 and December 2022. The ASAMI criteria were applied to assess the bone and functional outcomes, and postoperative complications were evaluated by using the Paley classification.
J Steroid Biochem Mol Biol
December 2024
Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China. Electronic address:
Segetalin B (SB) has shown promise in mitigating osteoporosis in ovariectomized (OVX) mice, though its underlying mechanisms remain unclear. This study investigates how SB promotes bone formation through Phospholipase D1 (PLD1) activation in OVX models. In vitro, bone marrow-derived mesenchymal stem cells (BMSCs) from OVX mice were cultured for osteogenic differentiation.
View Article and Find Full Text PDFBioact Mater
March 2025
College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China.
Bioactive ceramics have been used in bone tissue repair and regeneration. However, because of the complex in vivo osteogenesis process, long cycle, and difficulty of accurately tracking, the mechanism of interaction between materials and cells has yet to be fully understood, hindering its development. The ceramic microbridge microfluidic chip system may solve the problem and provide an in vitro method to simulate the microenvironment in vivo.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
Human long bones exhibit pore size gradients with small pores in the exterior cortical bone and large pores in the interior cancellous bone. However, most current bone tissue engineering (BTE) scaffolds only have homogeneous porous structures that do not resemble the graded architectures of natural bones. Pore-size graded (PSG) scaffolds are attractive for BTE since they can provide biomimicking porous structures that may lead to enhanced bone tissue regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!