Several MR methods have been proposed over the last decade to obtain quantitative estimates of the tissue blood oxygen saturation (StO2) using a quantification of the blood oxygen level dependent effect. These approaches are all based on mathematical models describing the time evolution of the MR signal in biological tissues in the presence of magnetic field inhomogeneities. Although the experimental results are very encouraging, possible biases induced by the model assumptions have not been extensively studied. In this study, a numerical approach was used to examine the influence on T(2)*, blood volume fraction, and StO2 estimates of possible confounding factors such as water diffusion, intravascular signal, and presence of arterial blood in the voxel. To evaluate the impact of the vessel geometry, straight cylinders and realistic data from two-photon microscopy for microvascular geometry were compared. Our results indicate that the models are sufficiently realistic, based on a good correlation between ground truth and MR estimates of StO2.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.23094DOI Listing

Publication Analysis

Top Keywords

quantitative estimates
8
model assumptions
8
blood oxygen
8
blood
5
estimates blood
4
blood oxygenation
4
oxygenation based
4
based t2*
4
t2* numerical
4
numerical study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!