Molecular-level simulation of pandemic influenza glycoproteins.

Methods Mol Biol

Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA.

Published: April 2012

Computational simulation of pandemic diseases provides important insight into many disease features that may benefit public health. This is especially true for the influenza virus, a continuing global pandemic threat. Molecular or atomic-level investigation of influenza has predominantly focused on the two major virus glycoproteins, neuraminidase (NA) and hemagglutinin (HA). In this chapter, we walk the readers through major considerations for studying pandemic influenza glycoproteins, from choosing the most useful choice of system(s) to avoiding common pitfalls in experimental design and execution. While a brief discussion of several potential simulation and docking techniques is presented, we emphasize molecular dynamics (MD) and Brownian dynamics (BD) simulation techniques and molecular docking, within the context of biologically outstanding questions in influenza research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352029PMC
http://dx.doi.org/10.1007/978-1-61779-465-0_34DOI Listing

Publication Analysis

Top Keywords

simulation pandemic
8
pandemic influenza
8
influenza glycoproteins
8
influenza
5
molecular-level simulation
4
pandemic
4
glycoproteins computational
4
computational simulation
4
pandemic diseases
4
diseases insight
4

Similar Publications

Mechanical ventilation is the process through which breathing support is provided to patients who face inconvenience during respiration. During the pandemic, many people were suffering from lung disorders, which elevated the demand for mechanical ventilators. The handling of mechanical ventilators is to be done under the assistance of trained professionals and demands the selection of ideal parameters.

View Article and Find Full Text PDF

: The global AIDS pandemic highlights the urgent need for novel antiretroviral therapies (ART). In our previous work, Zinc C295 was identified as a potent HIV-1 integrase strand transfer (ST) inhibitor. This study explores its potential to also inhibit 3'-processing (3'P), thereby establishing its dual-targeting capability.

View Article and Find Full Text PDF

Over the past ten years, there has been an increasing demand for reliable consumer wearables as users are inclined to monitor their health and fitness metrics in real-time, especially since the COVID-19 pandemic. Reflectance pulse oximeters in fitness trackers and smartwatches provide convenient, non-invasive SpO measurements but face challenges in achieving medical-grade accuracy, particularly due to difficulties in capturing physiological signals, which may be affected by skin pigmentation. Hence, this study sets out to investigate the influence of skin pigmentation, particularly in individuals with darker skin, on the accuracy and reliability of SpO measurement in consumer wearables that utilise reflectance pulse oximeters.

View Article and Find Full Text PDF

The effect of skin pigmentation on photoplethysmography and, specifically, pulse oximetry has recently received a significant amount of attention amongst researchers, especially since the COVID-19 pandemic. With most computational studies observing overestimation of arterial oxygen saturation (SpO) in individuals with darker skin, this study seeks to further investigate the root causes of these discrepancies. This study analysed intensity changes from Monte Carlo-simulated reflectance PPG signals across light, moderate, and dark skin types at oxygen saturations of 70% and 100% in MATLAB R2024a.

View Article and Find Full Text PDF

The COVID-19 pandemic has caused over 7 million deaths globally in the past four years. spp. (Siparunaceae), which is used in Brazilian folk medicine, is considered a genus with potential antiviral alternatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!