Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent years have seen an explosion in the development of novel ophthalmic imaging devices, delivering non-invasive views of the living retina. Adaptive optics (AO) imaging systems enable resolution of individual cells in the living retina. Analysis of these images has been limited to measures of cone density and regularity. Here we introduce a small case series where the information in the high-resolution image extends beyond these standard metrics. These images should serve as the basis for evolving discussion as to how best to interpret AO retinal images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325514 | PMC |
http://dx.doi.org/10.1007/978-1-4614-0631-0_57 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!