Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mesenchymal stem cells (MSCs) are potential and optimal stem cells in clinical cell therapy, and fetal bovine serum (FBS) is widely used for expansion of MSCs, despite the risks of infectious disease transmission and immunological reaction of the xenogenic origin. This study was designed to compare human four blood group cord blood serum (CBS) with FBS in culturing human placenta-derived mesenchymal stem cells (hPDMSCs), which were derived from four blood group donors. The expansion medium included: 10% FBS, 10% A-CBS, 10% B-CBS, 10% O-CBS, and 10% AB-CBS. Cumulative population doubling, generation time, fold expansion rates and differentiation capacity, cell cycle, and immunophenotype were also assessed. The results showed that fold expansion rate and cumulative population doubling of hPDMSCs significantly increased during long-term MSC expansion in CBS medium, but the generation time decreased compared with FBS. CBS might be an effective supplement for stem cells expand rapidly ex vivo. Cell cycle and differentiation assays showed that most of the hPDMSCs expanding in the presence of CBS were in stationary phase, which was the characteristic of stem cells, and they retained their ability to differentiate into chondrogenic and endothelial cells. By comparing these four blood groups of CBS, we found that there was no significant difference among different blood groups in culturing hPDMSCs, which were isolated from different blood group donors. So CBS may be an optimal replacement to avoid the risks of FBS application in expansion of stem cell for clinical cell therapy and tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/096368911X612486 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!