Background: Behind armor blunt trauma (BABT) describes a nonpenetrating injury to the organs of an individual wearing body armor. The aim of this study was to investigate the neurologic and functional changes that occur in the central nervous system after high-velocity BABT of the spine as well as its biomechanical characteristics.

Methods: This study evaluated 28 healthy adult white pigs. Animals were randomly divided into three experimental groups: (1) 15 animals (9 in the exposed group and 6 in the control group) were tested for neurologic changes; (2) 10 animals (5 in the exposed group and 5 in the control group) were used for studies of cognitive function; (3) and 3 animals were used for examination of biomechanics. In the group tested for neurologic changes, 9 anesthetized pigs wearing body armor (including a ceramic plate and polyethylene body armor) on the back were shot on the eighth thoracic vertebrae (T8) with a 5.56-mm rifle bullet (velocity appropriately 910 m/s). As a control, six pigs were shot with blank ammunition. Ultrastructural changes of the spinal cord and brain tissue were observed with light and electron microscopy. Expression levels of myelin basic protein, neuron-specific enolase (NSE), and glial cytoplasmic protein (S-100B) were investigated in the serum and cerebrospinal fluid using enzyme-linked immunosorbent assays. Electroencephalograms (EEGs) were monitored before and 10 minutes after the shot. Pressures in the spine, common carotid artery, and brain were detected. Acceleration of the 10th vertebrae (T10) was tested. Finally, cognitive outcomes between exposed and control groups were compared.

Results: Neuronal degeneration and nerve fiber demyelination were seen in the spinal cord. The concentrations of neuron-specific enolase, myelin basic protein, and S-100B were significantly increased in the serum and cerebrospinal fluid 3 hours after trauma (p < 0.05). The electroencephalogram was suppressed within 3 to 6 minutes after trauma. The pressure detected in the brain was higher than that detected in the common carotid artery (p < 0.01). The trauma resulted in paralysis of two hind limbs and in cognitive dysfunction.

Conclusion: The results from our animal model indicate that high-velocity BABT of the spine generates high pressure and acceleration in the spine, induces varying degrees of paralysis of hind limbs, and disturbs cerebral function. The neuronal degeneration caused by the pressure wave may be one of the important pathologic events involved in the development of trauma-related complications.

Download full-text PDF

Source
http://dx.doi.org/10.1097/TA.0b013e318231bce7DOI Listing

Publication Analysis

Top Keywords

body armor
12
armor blunt
8
blunt trauma
8
wearing body
8
high-velocity babt
8
babt spine
8
animals exposed
8
exposed group
8
group control
8
control group
8

Similar Publications

Impact Resistance of Layered Aramid Fabric: A Numerical Study on Projectile-Induced Damage.

Polymers (Basel)

December 2024

Faculty of Entrepreneurship, Engineering and Business Management, National University of Science and Technology Politehnica, 060042 Bucharest, Romania.

The aim of this work is to comparatively analyze, using numerical simulation, the impact behavior of aramid fabric. A layered panel was impacted by two projectiles specific to the NIJ protection level HG1. The protection level in this study is based on NIJ Standard 0123.

View Article and Find Full Text PDF

Purpose: While pump manipulation is rarely problematic in male patients with artificial urinary sphincters (AUSs), the situation may differ in female patients due to anatomical or cultural factors. This study aimed to evaluate the prevalence of difficulties in pump manipulation among female AUS patients, identify associated risk factors, and explore management strategies for this challenging issue.

Methods: Data were collected from all female patients who underwent a robotic AUS implantation at a single academic center between 2014 and 2022.

View Article and Find Full Text PDF

A Highly Impact-Tolerant Textile-Based Lithium-Ion Battery.

ACS Appl Mater Interfaces

January 2025

Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, Innovation Campus, University of Wollongong, Wollongong, NSW 2500, Australia.

Textile-based lithium-ion batteries (LIBs) are in great demand to power wearable electronics. They currently face a key safety challenge, particularly concerning mechanical abuse that could trigger thermal runaway, causing harm to individuals. Here, we report on Kevlar-fabric-based LIBs that can afford high impact tolerance while offering excellent electrochemical performance comparable to metal-foil-based cells.

View Article and Find Full Text PDF

Passivated hydrogel interface: Armor against foreign body response and inflammation in small-diameter vascular grafts.

Biomaterials

December 2024

Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China. Electronic address:

The development of small-diameter vascular grafts (SDVGs) still faces significant challenges, particularly in overcoming blockages within vessels. A key issue is the foreign-body response (FBR) triggered by the implants, which impairs the integration between grafts and native vessels. In this study, we applied an interfacial infiltration strategy to create a stable, hydrophilic, and passivated hydrogel coating on SDVGs.

View Article and Find Full Text PDF

Histological Study of Skin Structures From Selected Body Areas in the Varanus komodoensis.

J Morphol

January 2025

Department of Biostructure and Animal Physiology, Division of Histology and Embryology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.

The skin of the Komodo dragon (Varanus komodoensis) is covered by a form of armour formed mainly of scales, which often co-occur with osteoderms. Scales are keratinized, non-mineralized structures in the uppermost layer of the epidermis that are in contact with each other to form a system in which individual scales are isolated from each other by a softer skin fold zone. In the Varanus, the surface of the scales is flat and smooth (thoracic limb, abdomen, and tail areas), domed and smooth (head area) or domed with conical ornamentation (dorsal surface, pelvic limb-dorsal surface areas).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!