A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Purinergic modulation of the excitatory synaptic input onto rat striatal neurons. | LitMetric

There is no in situ evidence hitherto for a modulation by ATP of the glutamatergic excitatory transmission onto medium spiny neurons (MSNs) in the rat striatum. In order to resolve this question, we used the patch-clamp technique in brain slice preparations to record excitatory postsynaptic currents (EPSCs) evoked by intrastriatal electrical stimulation and applied N-methyl-d-aspartate (NMDA) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) to activate transmembrane currents of MSNs. In the absence of external Mg(2+), ATP caused a higher maximum inhibition of the EPSCs than adenosine. Only P1 (A(1)), but not P2 receptor antagonists interfered with the effects of both ATP and adenosine. Moreover, A(1) receptor antagonists were less potent in blocking the inhibition by ATP than that by adenosine. Eventually, adenosine deaminase (ADA) almost abolished the adenosine-induced inhibition, but only moderately decreased the ATP-induced inhibition. Antagonists of A(1) receptors (but not of P2 receptors) counteracted the depression by ATP of the current responses to exogenous NMDA, without altering those to AMPA. It is suggested that ATP indirectly, via its degradation product adenosine, stimulates presynaptic inhibitory A(1) receptors situated at glutamatergic nerve terminals of striatal afferents; these nerve terminals are devoid of P2 receptors. However, ATP, in contrast to adenosine, also activates postsynaptic A(1) receptors at the MSN neurons themselves. The resulting negative interaction with NMDA receptors requires localized extracellular catabolism of ATP by ectonucleotidases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2011.12.001DOI Listing

Publication Analysis

Top Keywords

atp
8
adenosine receptor
8
receptor antagonists
8
atp adenosine
8
nerve terminals
8
adenosine
6
receptors
6
purinergic modulation
4
modulation excitatory
4
excitatory synaptic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!