Deletion of Gremlin1 increases cell proliferation and migration responses in mouse embryonic fibroblasts.

Cell Signal

UCD Conway Institute, UCD School of Medicine and Medical Science, University College Dublin, Belfield Dublin 4, Ireland.

Published: April 2012

Gremlin1 (Grem1) is an antagonist of bone morphogenetic proteins (BMPs) that plays a critical role in embryonic and postnatal development. Grem1 has been implicated as both a promoter and an inhibitor of cell proliferation driven by BMP-4 and other mitogens in a diverse range of cell types. Recent data showed that Grem1 can trigger angiogenesis via vascular endothelial growth factor receptor (VEGFR2) binding, highlighting that the precise modalities of Grem1 signalling require further elucidation. In an attempt to enhance our understanding of the role of Grem1 in cell proliferation, mouse embryonic fibroblasts lacking grem1 (grem1⁻/⁻) were generated. Grem1⁻/⁻ cells showed elevated levels of proliferation in vitro compared to wild-type and grem1⁺/⁻, with accelerated scratch wound repair but no obvious changes in cell cycle profile. Modest increases in BMP-4-stimulated Smad1/5/8 phosphorylation were detected in grem1⁻/⁻ cells, with concomitant modest changes in Smad-dependent gene expression. Surprisingly, levels of ERK phosphorylation were reduced in grem1⁻/⁻ cells compared to wild-type. These data suggest Grem1 is an inhibitor of embryonic fibroblast proliferation in vitro. Furthermore, the signalling pathways causing increased cell proliferation in the absence of Grem1 may involve other pathways distinct from canonical Smad and non-canonical ERK signalling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2011.12.008DOI Listing

Publication Analysis

Top Keywords

cell proliferation
16
grem1⁻/⁻ cells
12
mouse embryonic
8
embryonic fibroblasts
8
grem1
8
data grem1
8
proliferation vitro
8
compared wild-type
8
cell
6
proliferation
6

Similar Publications

Berberine (BBR) has been proved to inhibit the malignant progression of non-small cell lung cancer (NSCLC), but the underlying molecular mechanism still needs to be further revealed. NSCLC cells (A549 and H1299) were treated with BBR. CCK8 assay, colony formation assay, flow cytometry, TUNEL staining and transwell assay were used to examine cell proliferation, apoptosis and invasion.

View Article and Find Full Text PDF

Nobiletin: a potential erythropoietin receptor activator protects renal cells against hypoxia.

Apoptosis

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.

Tangerine peel is a traditional Chinese herb and has been widely applied in foods and medicine for its multiple pharmacological effects. Erythropoietin receptor (EPOR), a member of the cytokine receptor family, is widely expressed in multiple tissues in especial kidney and plays protective effects in adverse physiological and pathological conditions. We hypothesized that it might be EPOR agonists existing in Tangerine peel bring such renal benefits.

View Article and Find Full Text PDF

Hereditary diffuse gastric cancer is characterized by an increased risk of diffuse gastric cancer and lobular breast cancer, and is caused by pathogenic germline variants of E-cadherin and -E-catenin, which are key regulators of cell-cell adhesion. However, how the loss of cell-cell adhesion promotes cell dissemination remains to be fully understood. Therefore, a three-dimensional computer model was developed to describe the initial steps of diffuse gastric cancer development.

View Article and Find Full Text PDF

Purpose: This study aims to elucidate the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in Hunner-type Interstitial Cystitis (HIC) and evaluate its potential as a therapeutic target.

Methods: Bladder tissue samples were obtained from HIC patients and normal bladder tissue from bladder cancer patients. PACAP expression was assessed through immunohistochemistry.

View Article and Find Full Text PDF

Metabolic reprogramming is considered one of the hallmarks of cancer in which cancer cells reprogram some of their metabolic cascades, mostly driven by the specific chemical microenvironment in cancer tissues. The altered metabolic pathways are increasingly being considered as potential targets for cancer therapy. In this view, Aldolase A (ALDOA), a key glycolytic enzyme, has been validated as a candidate oncogene in several cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!