In mammals, the NADPH oxidase family of enzymes comprises seven members: NOXs 1-5, DUOX1, and DUOX2. All of these enzymes function to move an electron across cellular membranes, transferring it to oxygen to generate the superoxide anion. This generation of reactive oxygen species has important physiological and pathophysiological roles. NOX5 is perhaps the least well understood of these NOX isoforms, in part because the gene is not present in mice or rats. In recent years, however, there has been a rapid increase in our understanding of the NOX5 gene, the structural and biochemical aspects of the NOX5 enzyme, the role NOX5 plays in health and disease, and the development of novel NOX inhibitors. This review takes a look back at some historical aspects of the discovery of NOX5 and summarizes our current understanding of the enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2011.11.023 | DOI Listing |
Zhongguo Zhong Yao Za Zhi
November 2024
Department of Pharmacy, Zhongshan Hospital, Fudan University Shanghai 200032, China.
This study explored the generation site and regulation mechanism of reactive oxygen species(ROS) in the apoptosis of colorectal cancer cells induced by furanodienone(Fur). RKO cells were treated with 200 μmol·L~(-1) of Fur, and the changes in intracellular nicotinamide adenine dinucleotide phosphate oxidase(NOX) activity were detected by the NOX activity detection method. The control group, Fur group, diphenyleneiodonium(DPI) inhibitor group for general NOX, mitochondrial-targeted antioxidant(MitoTEMPO) group, Fur+DPI group, Fur+MitoTEMPO group, and H_2O_2 positive control group were set up.
View Article and Find Full Text PDFBiol Res
December 2024
Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile.
NADPH oxidases (NOX) are membrane-bound proteins involved in the localized generation of reactive oxygen species (ROS) at the cellular surface. In cancer, these highly reactive molecules primarily originate in mitochondria and via NOX, playing a crucial role in regulating fundamental cellular processes such as cell survival, angiogenesis, migration, invasion, and metastasis. The NOX protein family comprises seven members (NOX1-5 and DUOX1-2), each sharing a catalytic domain and an intracellular dehydrogenase site.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa. Electronic address:
The investigation of the methanol extract of the flowers of Jacaranda mimosifolia led to the isolation and characterisation of fourteen secondary metabolites (1-14) by the means of chromatographic and spectroscopic analysis. These compounds include eight flavonoids sorted as two flavonols (1-2), three flavones (3, 7-8), and three isoflavones (4, 9-10), two glucoiridoids (5-6), and four triterpenoids sorted as one oleanane (11), one hopane (12), and two lupane (13-14). The in vitro antioxidant potential of all the isolated compounds was evaluated using the ABTS- and FRAP- methods, which demonstrated concentration-dependent activity.
View Article and Find Full Text PDFFASEB J
December 2024
College of Life Sciences, Beijing Normal University, Beijing, China.
Reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidases (NOX) are a major cellular source of reactive oxygen species, regulating vital physiological functions, whose dys-regulation leads to a plethora of major diseases. Much effort has been made to develop varied types of NOX inhibitors, but biotechnologies for spatially and temporally controlled NOX activation, however, are not readily available. We previously found that ultraviolet A (UVA) irradiation activates NOX2 in rodent mast cells, to elicit persistent calcium spikes.
View Article and Find Full Text PDFArch Endocrinol Metab
November 2024
Department of Biology Medical Genetics and Ecology Kursk State Medical University Kursk Russian Federation Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russian Federation.
Objective: This pilot study investigated whether single nucleotide polymorphisms (SNP) in the NOX5 gene (NADPH oxidase 5) are associated with the type 2 diabetes (T2D) risk.
Subjects And Methods: A total of 1579 patients with T2D and 1627 age- and sex-matched healthy subjects were recruited for this study. Genotyping of common SNPs, namely rs35672233, rs3743093, rs2036343, rs311886, and rs438866, was performed using the MassArray-4 system.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!