Temporal niche overlap among insectivorous small mammals.

Integr Zool

Laboratory of Ecology of Mammals, Zoology, University of Vale do Rio dos Sinos, São Leopoldo, Brazil.

Published: December 2011

Being active in the same environment at different times exposes animals to the effects of very different environmental factors, both biotic and abiotic. In the present study, we used live traps equipped with timing devices to evaluate the potential role of biotic factors (competition and food abundance) on overall overlap in the temporal niche axis of 4 insectivorous small mammals in high-elevation grassland fields ('campos de altitude') of southern Brazil. Based on resources availability (invertebrates), data on animal captures were pooled in 2 seasons: 'scarcity' (June 2001-September 2001) and 'abundance' (November 2001-May 2002) seasons. We tested for non-random structure in temporal niche overlap among the species in each season. These species were the rodents Oxymycterus nasutus (Waterhouse, 1837), Deltamys sp., Akodon azarae (Fischer, 1829), and the marsupial Monodelphis brevicaudis Olfers, 1818. The studied community was mainly diurnal with crepuscular peaks. Simulations using the Pianka index of niche overlap indicated that the empirical assemblage-wide overlap was not significantly different from randomly generated patterns in the abundance season but significantly greater than expected by chance alone in the scarcity season. All the species showed an increase in temporal niche breadth during the abundance season, which appears to be related to longer daylength and high nocturnal temperatures. Patterns on both temporal niche overlap and temporal niche breadth were the opposite to those that we were expecting in the case of diel activity patterns determined by competition for dietary resources. Therefore, we conclude that competition did not seem to be preponderant for determining patterns of temporal niche overlap by the studied community.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-4877.2011.00266.xDOI Listing

Publication Analysis

Top Keywords

temporal niche
28
niche overlap
20
insectivorous small
8
small mammals
8
overlap temporal
8
season species
8
studied community
8
abundance season
8
niche breadth
8
patterns temporal
8

Similar Publications

This study aims to enhance our understanding of the temporal and spatial processes scales governing the evolutionary diversification of Neotropical birds with Trans- and Cis-Andean populations of the species from South and Central America. Through a multilocus analysis of the mitochondrial (CytB and ND2) and nuclear genes (I7BF, I5BF, and G3PDH) of 41 samples representing six subspecies, we describe the existing molecular lineages of , and estimate their demographic dynamics. We used Ecological Niche Modeling (ENM) with six different algorithms to predict the potential distribution of in both present-day and past scenarios, examining the overlap climatic niche between Cis- and Trans-Andean lineages.

View Article and Find Full Text PDF

Single-cell genomic technologies enable the multimodal profiling of millions of cells across temporal and spatial dimensions. However, experimental limitations hinder the comprehensive measurement of cells under native temporal dynamics and in their native spatial tissue niche. Optimal transport has emerged as a powerful tool to address these constraints and has facilitated the recovery of the original cellular context.

View Article and Find Full Text PDF

Interspecific interactions are important drivers of population dynamics and species distribution. These relationships can increase niche partitioning between sympatric species, which can differentiate space and time use or modify their feeding strategies. Roe deer and red deer are two of the most widespread ungulate species in Europe and show spatial and dietary overlap.

View Article and Find Full Text PDF

The main features of long-distance migration are derived from landbirds breeding in the Northern Hemisphere. Little is known about migration within the tropics, presumably because tropical species typically move opportunistically and over shorter distances. However, such generalizations are weakened by a lack of solid data on spatial, temporal and behavioural patterns of intra-tropical migrations.

View Article and Find Full Text PDF

Plant root and soil-associated microbiomes are influenced by niches, including bulk and rhizosphere soil. In this work, we collected bulk and rhizosphere soil samples at four potato developmental stages (leaf growth, flowering, tuber elongation and harvest) to identify whether rhizosphere microbiota are structured in a growth stage-dependent manner. The bacterial and fungal microbiota showed significant temporal differences in the rhizosphere and bulk soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!