Unconventional temperature enhanced magnetism in Fe1.1Te.

Phys Rev Lett

CMPMSD, Brookhaven National Laboratory, Upton, New York 11973, USA.

Published: November 2011

Our inelastic neutron scattering study of spin excitations in iron telluride reveals remarkable thermal evolution of the collective magnetism. In the temperature range relevant for the superconductivity in FeTe(1-x)Se(x) materials, where the local-moment behavior is dominated by liquidlike correlations of emergent spin plaquettes, we observe unusual, marked increase of magnetic fluctuations upon heating. The effective spin per Fe at T ≈ 10  K, in the phase with weak antiferromagnetic order, corresponds to S ≈ 1, consistent with the recent analyses that emphasize importance of Hund's coupling [K. Haule and G. Kotliar, New J. Phys. 11, 025021 (2009).]. However, it grows to S ≈ 3/2 in the high-T disordered phase, suggestive of the Kondo-type behavior, where local magnetic moments are entangled with the itinerant electrons.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.107.216403DOI Listing

Publication Analysis

Top Keywords

unconventional temperature
4
temperature enhanced
4
enhanced magnetism
4
magnetism fe11te
4
fe11te inelastic
4
inelastic neutron
4
neutron scattering
4
scattering study
4
study spin
4
spin excitations
4

Similar Publications

Unlabelled: The effects of high hydrostatic pressure (HHP) (400-650 MPa) and holding temperature (25-50 °C) in thermally assisted HHP processing on multi-scale structure of starch (granule, crystalline and molecular), techno-functional properties, and digestibility of sorghum starch (SS) were evaluated. Response surface methodology has verified that the process impact on the modification of SS was dependent primarily on the pressure level. As HHP increased, processed SS progressively lost their granular structure and Maltese cross, indicating gradual structural disorder within the granules.

View Article and Find Full Text PDF

The oil film formed by the adhesion of crude oil to the resin-asphalt adsorption layer is difficult to peel off due to the strong oil-solid interaction, which severely limits further improvements in oil recovery. Although conventional compound oil displacement systems can effectively reduce oil-water interfacial tension, facilitate oil droplet deformation, and alleviate the Jamin effect, they are insufficient in controlling the wettability of oleophilic rock surfaces. In this paper, sodium nonylphenol polyoxyethylene ether sulfate (NPES) and sodium lauric acid ethanolamine sulfonate (HLDEA) were compounded to construct an efficient oil displacement system that simultaneously achieves wettability control of lipophilic surfaces and ultralow oil-water interfacial tension.

View Article and Find Full Text PDF

[Establishment and application of a genetic operating system in for the synthesis of tetraacetyl phytosphingosine].

Sheng Wu Gong Cheng Xue Bao

January 2025

School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China.

(.), an unconventional heterothallic yeast species, is renowned for its high production of tetraacetyl phytosphingosine (TAPS). Due to its excellent performance in TAPS production, this study aimed to construct a genetic operating system of .

View Article and Find Full Text PDF

Although oil extraction is indispensable for meeting worldwide energy demands and ensuring industrial sustainability, various hazards are observed. Therefore, this study examined the chemical oil recovery-related environmental consequences concerning water, soil, ecosystem, and human health damages. A numerical analysis explored the mathematical model for oil extraction from unconventional sources by utilising 3D porous prism geometries under high-temperature conditions.

View Article and Find Full Text PDF

The next generation of soft electronics will expand to the third dimension. This will require the integration of mechanically compliant 3D functional structures with stretchable materials. Here, omnidirectional direct ink writing (DIW) of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) aerogels with tunable electrical and mechanical performance is demonstrated, which can be integrated with soft substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!