Collinear-laser spectroscopy with the bunched-beams technique was used for the study of neutron deficient Rb isotopes, out to (74)Rb (N = Z = 37) at TRIUMF. The measured hyperfine coupling constants of (76,78m)Rb were in agreement with literature values. The nuclear spin of (75)Rb was confirmed to be I = 3/2, and its hyperfine coupling constants were measured for the first time. The mean-square charge radius of (74)Rb was determined for the first time. This result has improved the isospin symmetry breaking correction term used to calculate the Ft value, with implications for tests of the unitarity of the Cabibbo-Kobayashi-Maskawa matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.107.212502DOI Listing

Publication Analysis

Top Keywords

charge radius
8
radius 74rb
8
tests unitarity
8
unitarity cabibbo-kobayashi-maskawa
8
cabibbo-kobayashi-maskawa matrix
8
hyperfine coupling
8
coupling constants
8
experimental determination
4
determination charge
4
74rb application
4

Similar Publications

B0AT1 (SLC6A19) is a major sodium-coupled neutral amino acid transporter that relies on angiotensin converting enzyme 2 (ACE2) or collectrin for membrane trafficking. Despite its significant role in disorders associated with amino acid metabolism, there is a deficit of comprehensive structure-function understanding of B0AT1 in lipid environment. Herein, we have employed molecular dynamics (MD) simulations to explore the architectural characteristics of B0AT1 in two distinct environments: a simplified POPC bilayer and a complex lipid system replicating the native membrane composition.

View Article and Find Full Text PDF

Reversible multivalent carrier redox exceeding intercalation capacity boundary.

Nat Commun

January 2025

Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.

Compared with widely established monovalent-ion batteries, aqueous multivalent-ion batteries promise higher capacity release by achieving multiple electron-transfer events per ion intercalation in the host material. Despite plausibility, this high-capacity dream is untenable with the total tolerable redox charge-transfer limit of the host material for all carrier species equally, which is historically assumed to depend on the material rather than the guest carrier itself, and the kinetic hysteresis induced by larger charge/radius ratios induced kinetic hysteresis further enlarges the divide. Herein, we report that copper carrier redox in vanadium sulfide (VS) exceeds the intrinsic intercalation capacity boundary, with the highest capacity release as 675 mAh g at 0.

View Article and Find Full Text PDF

Physicochemical characteristics of chitosan molecules: Modeling and experiments.

Adv Colloid Interface Sci

December 2024

Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland. Electronic address:

Chitosan, a biocompatible polysaccharide, finds a wide range of applications, inter alia as an antimicrobial agent, stabilizer of food products, cosmetics, and in the targeted delivery of drugs and stem cells. This work represents a comprehensive review of the properties of chitosan molecule and its aqueous solutions uniquely combining theoretical modeling and experimental results. The emphasis is on physicochemical aspects which were sparsely considered in previous reviews.

View Article and Find Full Text PDF

Direct measurement of surface interactions experienced by sticky microcapsules made from environmentally benign materials.

J Colloid Interface Sci

December 2024

Department of Chemical and Biomolecular Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, United States.

We present a study combining experimental measurements, theoretical analysis, and simulations to investigate core-shell microcapsules interacting with a solid boundary, with a particular focus on understanding the short-range potential energy well arising from the tethered force. The microcapsules, fabricated using a Pickering emulsion template with a cinnamon oil core and calcium alginate shell, were characterized for size (∼5-6μm in diameter) and surface charge (∼-20mV). We employed total internal reflection microscopy and particle tracking to measure the microcapsule-boundary interactions and diffusion, from which potential energy and diffusivity profiles were derived.

View Article and Find Full Text PDF

The effects of guanidinium hydrochloride (GdmCl) on two intrinsically disordered proteins (IDPs) are investigated using simulations of the self-organized polymer-IDP (SOP-IDP) model. The impact of GdmCl is taken into account using the molecular transfer model (MTM). We show that due to the dramatic reduction in the stiffness of the highly charged Prothymosin-α (ProTα) with increasing concentration of GdmCl ([GdmCl]), the radius of gyration () decreases sharply until about 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!