Multifunctional nanogels for siRNA delivery.

Acc Chem Res

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, 30332-0400, United States.

Published: July 2012

The application of RNA interference to treat disease is an important yet challenging concept in modern medicine. In particular, small interfering RNA (siRNA) have shown tremendous promise in the treatment of cancer. However, siRNA show poor pharmacological properties, which presents a major hurdle for effective disease treatment especially through intravenous delivery routes. In response to these shortcomings, a variety of nanoparticle carriers have emerged, which are designed to encapsulate, protect, and transport siRNA into diseased cells. To be effective as carrier vehicles, nanoparticles must overcome a series of biological hurdles throughout the course of delivery. As a result, one promising approach to siRNA carriers is dynamic, versatile nanoparticles that can perform several in vivo functions. Over the last several years, our research group has investigated hydrogel nanoparticles (nanogels) as candidate delivery vehicles for therapeutics, including siRNA. Throughout the course of our research, we have developed higher order architectures composed entirely of hydrogel components, where several different hydrogel chemistries may be isolated in unique compartments of a single construct. In this Account, we summarize a subset of our experiences in the design and application of nanogels in the context of drug delivery, summarizing the relevant characteristics for these materials as delivery vehicles for siRNA. Through the layering of multiple, orthogonal chemistries in a nanogel structure, we can impart multiple functions to the materials. We consider nanogels as a platform technology, where each functional element of the particle may be independently tuned to optimize the particle for the desired application. For instance, we can modify the shell compartment of a vehicle for cell-specific targeting or evasion of the innate immune system, whereas other compartments may incorporate fluorescent probes or regulate the encapsulation and release of macromolecular therapeutics. Proof-of-principle experiments have demonstrated the utility of multifunctional nanogels. For example, using a simple core/shell nanogel architecture, we have recently reported the delivery of siRNA to chemosensitize drug resistant ovarian cancer cells. Ongoing efforts have resulted in several advanced hydrogel structures, including biodegradable nanogels and multicompartment spheres. In parallel, our research group has studied other properties of the nanogels, including their behavior in confined environments and their ability to translocate through small pores.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ar200216fDOI Listing

Publication Analysis

Top Keywords

multifunctional nanogels
8
sirna
8
delivery vehicles
8
delivery
7
nanogels
6
nanogels sirna
4
sirna delivery
4
delivery application
4
application rna
4
rna interference
4

Similar Publications

A hyaluronic acid nanogels based exosome production factory for tumor photothermal therapy and angiogenesis inhibition.

Int J Biol Macromol

December 2024

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China. Electronic address:

Exosomes as a unique drug delivery system provide a new choice for tumor therapy. However, the in vitro functionalization of exosomes and the process of circulating drug delivery can easily cause exosome degradation and drug loss, thus reducing the efficiency of drug delivery. In this work, based on the endocyto-fusion-exocytosis pathway of exosome formation, a multifunctional hyaluronic acid nanogel loaded with the antiangiogenic drug vatalanib and the near-infrared photothermal agent indocyanine green (ICG) was designed.

View Article and Find Full Text PDF

Chitosan, a versatile biopolymer derived from chitin, is increasingly recognized in the milk industry for its multifunctional applications in drug delivery, smart packaging, and biosensor development. This review provides a comprehensive analysis of recent advances in chitosan production techniques. These include chemical, biological, and novel methods such as deep eutectic solvents (DES), microwave-assisted approaches, and laser-assisted processes.

View Article and Find Full Text PDF

Glycyrrhizic acid-based multifunctional nanoplatform for tumor microenvironment regulation.

Chin J Nat Med

December 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. Electronic address:

Natural compounds demonstrate unique therapeutic advantages for cancer treatment, primarily through direct tumor suppression or interference with the tumor microenvironment (TME). Glycyrrhizic acid (GL), a bioactive ingredient derived from the medicinal herb Glycyrrhiza uralensis Fisch., and its sapogenin glycyrrhetinic acid (GA), have been recognized for their ability to inhibit angiogenesis and remodel the TME.

View Article and Find Full Text PDF

In-situ oxygen-supplying ROS nanopurifier for enhanced healing of MRSA-infected diabetic wounds via microenvironment modulation.

Acta Biomater

December 2024

State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China. Electronic address:

Hypoxia, high ROS levels and chronic inflammation are the main factors that hinder the healing of diabetic wounds. Long-term exposed wounds are prone to bacterial infection, especially MRSA infection, which exacerbates the complex wound microenvironment of diabetes and threatens patients' lives. Here, we developed a ROS nanopurifier (CSVNP), which was prepared by loading superoxide dismutase (SOD), catalase (CAT) and vancomycin into nanogels through in-situ polymerization.

View Article and Find Full Text PDF

Editorial: Functional nanogels and multicomponent supramolecular systems.

Front Chem

November 2024

Laboratório Nanotecnologia e Engenharia de Processos-NEP, Universidade de São Paulo, Lorena, São Paulo, Brazil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!