A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

General description of electromagnetic radiation processes based on instantaneous charge acceleration in "endpoints". | LitMetric

General description of electromagnetic radiation processes based on instantaneous charge acceleration in "endpoints".

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Astrophysics, IMAPP, Radboud University Nijmegen, Nijmegen, the Netherlands.

Published: November 2011

We present a methodology for calculating the electromagnetic radiation from accelerated charged particles. Our formulation-the "endpoint formulation"-combines numerous results developed in the literature in relation to radiation arising from particle acceleration using a complete, and completely general, treatment. We do this by describing particle motion via a series of discrete, instantaneous acceleration events, or "endpoints," with each such event being treated as a source of emission. This method implicitly allows for particle creation and destruction, and is suited to direct numerical implementation in either the time or frequency domains. In this paper we demonstrate the complete generality of our method for calculating the radiated field from charged particle acceleration, and show how it reduces to the classical named radiation processes such as synchrotron, Tamm's description of Vavilov-Cherenkov, and transition radiation under appropriate limits. Using this formulation, we are immediately able to answer outstanding questions regarding the phenomenology of radio emission from ultra-high-energy particle interactions in both the earth's atmosphere and the moon. In particular, our formulation makes it apparent that the dominant emission component of the Askaryan effect (coherent radio-wave radiation from high-energy particle cascades in dense media) comes from coherent "bremsstrahlung" from particle acceleration, rather than coherent Vavilov-Cherenkov radiation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.84.056602DOI Listing

Publication Analysis

Top Keywords

particle acceleration
12
electromagnetic radiation
8
radiation processes
8
radiation
7
particle
7
acceleration
5
general description
4
description electromagnetic
4
processes based
4
based instantaneous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!