A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Generalized variational principle for excited states using nodes of trial functions. | LitMetric

Generalized variational principle for excited states using nodes of trial functions.

Phys Rev E Stat Nonlin Soft Matter Phys

Dipartimento di Scienze Chimiche e Ambientali, Università dell'Insubria, Via Lucini 3, I-22100 Como, Italy.

Published: October 2011

The familiar variational principle provides an upper bound to the ground-state energy of a given Hamiltonian. This allows one to optimize a trial wave function by minimizing the expectation value of the energy. This approach is also trivially generalized to excited states, so that given a trial wave function of a certain symmetry, one can compute an upper bound to the lowest-energy level of that symmetry. In order to generalize further and build an upper bound of an arbitrary excited state of the desired symmetry, a linear combination of basis functions is generally used to generate an orthogonal set of trial functions, all bounding their respective states. However, sometimes a compact wave-function form is sought, and a basis-set expansion is not desirable or possible. Here we present an alternative generalization of the variational principle to excited states that does not require explicit orthogonalization to lower-energy states. It is valid for one-dimensional systems and, with additional information, to at least some n-dimensional systems. This generalized variational principle exploits information about the nodal structure of the trial wave function, giving an upper bound to the exact energy without the need to build a linear combination of basis functions. To illustrate the theorem we apply it to a nontrivial example: the 1s2s (1)S excited state of the helium atom.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.84.046705DOI Listing

Publication Analysis

Top Keywords

variational principle
16
upper bound
16
excited states
12
trial wave
12
wave function
12
generalized variational
8
principle excited
8
trial functions
8
excited state
8
linear combination
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!