Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The familiar variational principle provides an upper bound to the ground-state energy of a given Hamiltonian. This allows one to optimize a trial wave function by minimizing the expectation value of the energy. This approach is also trivially generalized to excited states, so that given a trial wave function of a certain symmetry, one can compute an upper bound to the lowest-energy level of that symmetry. In order to generalize further and build an upper bound of an arbitrary excited state of the desired symmetry, a linear combination of basis functions is generally used to generate an orthogonal set of trial functions, all bounding their respective states. However, sometimes a compact wave-function form is sought, and a basis-set expansion is not desirable or possible. Here we present an alternative generalization of the variational principle to excited states that does not require explicit orthogonalization to lower-energy states. It is valid for one-dimensional systems and, with additional information, to at least some n-dimensional systems. This generalized variational principle exploits information about the nodal structure of the trial wave function, giving an upper bound to the exact energy without the need to build a linear combination of basis functions. To illustrate the theorem we apply it to a nontrivial example: the 1s2s (1)S excited state of the helium atom.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.84.046705 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!