Drift wave turbulence in the presence of a dust density gradient.

Phys Rev E Stat Nonlin Soft Matter Phys

Institute for Ion Physics and Applied Physics, University of Innsbruck, A-6020 Innsbruck, Austria.

Published: October 2011

We present turbulent properties of electrostatic drift waves in a nonuniform collisional plasma composed of magnetized electrons and ions in the presence of immobile dust particles. For this purpose, we derive a pair of nonlinear quasi-two-dimensional equations exhibiting the coupling between the generalized ion vorticity and the density fluctuations associated with collisional drift waves. The effect of a dust density gradient on the initial drift instability and fully developed turbulence is examined numerically.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.84.046405DOI Listing

Publication Analysis

Top Keywords

dust density
8
density gradient
8
drift waves
8
drift
4
drift wave
4
wave turbulence
4
turbulence presence
4
presence dust
4
gradient turbulent
4
turbulent properties
4

Similar Publications

This study investigates the anatomical adaptations of leaves from two halophyte species, (Forsskal) Asch. and L., in response to pollutants from a cement factory and human activities.

View Article and Find Full Text PDF

Indoor residual spraying (IRS) and the use of insecticide-treated bednets for malaria vector control have contributed substantially to a reduction in malaria disease burden. However, these control tools have important shortcomings including being donor-dependent, expensive, and often failing because of insufficient uptake. We assessed the safety and efficacy of a user-friendly, locally tailored malaria vector control approach dubbed "Hut Decoration for Malaria Control" (HD4MC) based on the incorporation of a WHO-approved insecticide, Actellic 300 CS, into a customary hut decoration practice in rural Uganda where millions of the most vulnerable and malaria-prone populations live in mud-walled huts.

View Article and Find Full Text PDF

Recycling waste to produce liquid fuels for the automotive and aviation industries is a major global concern, especially in light of the ongoing energy crisis. Because waste is used in thermal conversion processes, the resulting liquid products often require additional processing to reduce their density and viscosity, and to remove oxygenated compounds or pollutants that hinder further utilization. Catalytic hydrogenolytic reactions such as hydrodeoxygenation (HDO) and hydrocracking (HC) have been extensively applied to upgrade pyrolysis oils.

View Article and Find Full Text PDF

Evaluating energy consumption patterns in novel foamed ternary alkali-activated masonry blocks.

Sci Rep

January 2025

Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Veszprém, Hungary.

This study endeavors to tackle the energy requirements of the building sector by employing passive design strategies. However, there exists a dearth of comprehension regarding the energy efficiency performance of foamed alkali-activated materials. To bridge this research gap, the study proposes a solution in the form of a thermally proficient wall material crafted from ceramic tile dust (CTD), class C fly ash (FA), and Ground Granulated Blast-Furnace Slag (GGBS), all of which are industrial by-products.

View Article and Find Full Text PDF

Adapting Methods for Isolation and Enumeration of Microplastics to Quantify Tire Road Wear Particles with Confirmation by Pyrolysis GC-MS.

Environ Sci Technol

January 2025

U.S. Environmental Protection Agency, E205-02, Research Triangle Park, P.O. Box 12055, Durham, North Carolina 27711, United States.

The complex, varied composition (i.e., rubbers/elastomers, carbon black, fillers, additives, and embedded road materials) and wide density range of tire road wear particles (TRWPs) present challenges for their isolation and identification from environmental matrices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!