Mechanisms of transcellular transport of 4-chloro-2-methylphenoxyacetic acid (MCPA) across the small intestine were investigated using Caco-2 cells cultured on permeable membranes. The cell monolayers were incubated with MCPA, either from apical side at pH 6.0 or 7.4, or basolateral side at pH 7.4. The accumulation and apical-to-basolateral transport of MCPA were markedly stimulated by the acidic pH on the apical side (inwardly directed H(+) gradient), dependent on metabolic energy and inhibited by co-incubation with acetic acid or benzoic acid. Without the H(+) gradient, on the other hand, the basolateral-to-apical transport of MCPA (secretory transport) was higher than the apical-to-basolateral transport (absorptive transport), although the secretory transport of MCPA was markedly lower than the absorptive transport under the H(+) gradient. Co-incubation of MCPA with probenecid from the basolateral side significantly inhibited the accumulation and transport of MCPA, whereas co-incubation with p-aminohippuric acid did not. These results suggest that the absorptive transport of MCPA is mediated by H(+)-linked monocarboxylic acid transporters expressed on the apical membranes, while secretory transport is mediated by a probenecid-sensitive transporter expressed on the basolateral membranes of Caco-2 cell monolayers.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-7843.2011.00850.xDOI Listing

Publication Analysis

Top Keywords

transport mcpa
20
cell monolayers
12
secretory transport
12
absorptive transport
12
transport
11
mcpa
9
transport 4-chloro-2-methylphenoxyacetic
8
4-chloro-2-methylphenoxyacetic acid
8
acid mcpa
8
caco-2 cell
8

Similar Publications

Characterisation of low-level pyrasulfotole resistance and the role of herbicide translocation in wild radish (Raphanus raphanistrum).

Pestic Biochem Physiol

September 2024

Australian Herbicide Resistance Initiative, UWA School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia.

The synthetic auxin 2,4-D and the 4-hydroxyphenylpyruvate dioxygenase inhibitor pyrasulfotole are phloem-mobile post-emergence herbicides, the latter applied in co-formulation with either bromoxynil (a contact herbicide causing leaf desiccation) or MCPA (another synthetic auxin). Previous studies have shown a wide range of 2,4-D translocation phenotypes in resistant populations of the agricultural weed Raphanus raphanistrum, but it was hypothesised that enhanced movement out of the apical meristem could contribute to resistance. Little is known about pyrasulfotole translocation or the effect of bromoxynil on pyrasulfotole movement.

View Article and Find Full Text PDF

Stochastic modelling of pesticide transport to drinking water sources via runoff and resulting human health risk assessment.

Sci Total Environ

March 2024

Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland; Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland. Electronic address:

A modelling framework was developed to facilitate a probabilistic assessment of health risks posed by pesticide exposure via drinking water due to runoff, with the inclusion of influential site conditions and in-stream processes. A Monte-Carlo based approach was utilised to account for the inherent variability in pesticide and population properties, as well as site and climatic conditions. The framework presented in this study was developed with an ability to integrate different data sources and adapt the model for various scenarios and locations to meet the users' needs.

View Article and Find Full Text PDF

Multiple herbicide resistance in a Cyperus difformis population in rice field from China.

Pestic Biochem Physiol

September 2023

Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China. Electronic address:

Herbicide resistance is rapidly emerging in Cyperus difformis in rice fields across China. The response of a C. difformis population GX-35 was tested against five acetolactate synthase (ALS)-inhibiting herbicides, auxin herbicide MCPA and photosynthesis II (PSII)-inhibitor bentazone.

View Article and Find Full Text PDF

Sustained anaerobic degradation of 4-chloro-2-methylphenoxyacetic acid by acclimated sludge in a continuous-flow reactor.

Chemosphere

July 2023

Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China. Electronic address:

4-Chloro-2-methylphenoxyacetic acid (MCPA) is a widely used herbicide across the world. MCPA is persistent and easily transports into anoxic environment, such as groundwater, sediments and deep soils. However, little research on anaerobic microbial degradation of MCPA was carried out.

View Article and Find Full Text PDF

Microbial pesticide degraders are heterogeneously distributed in soil. Their spatial aggregation at the millimeter scale reduces the frequency of degrader-pesticide encounter and can introduce transport limitations to pesticide degradation. We simulated reactive pesticide transport in soil to investigate the fate of the widely used herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) in response to differently aggregated distributions of degrading microbes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!