The heritable form of pulmonary arterial hypertension (PAH) is typically caused by a mutation in bone morphogenic protein receptor type 2 (BMPR2), and mice expressing Bmpr2 mutations develop PAH with features similar to human disease. BMPR2 is known to interact with the cytoskeleton, and human array studies in PAH patients confirm alterations in cytoskeletal pathways. The goal of this study was to evaluate cytoskeletal defects in BMPR2-associated PAH. Expression arrays on our Bmpr2 mutant mouse lungs revealed cytoskeletal defects as a prominent molecular consequence of universal expression of a Bmpr2 mutation (Rosa26-Bmpr2(R899X)). Pulmonary microvascular endothelial cells cultured from these mice have histological and functional cytoskeletal defects. Stable transfection of different BMPR2 mutations into pulmonary microvascular endothelial cells revealed that cytoskeletal defects are common to multiple BMPR2 mutations and are associated with activation of the Rho GTPase, Rac1. Rac1 defects are corrected in cell culture and in vivo through administration of exogenous recombinant human angiotensin-converting enzyme 2 (rhACE2). rhACE2 reverses 77% of gene expression changes in Rosa26-Bmpr2(R899X) transgenic mice, in particular, correcting defects in cytoskeletal function. Administration of rhACE2 to Rosa26-Bmpr2(R899X) mice with established PAH normalizes pulmonary pressures. Together, these findings suggest that cytoskeletal function is central to the development of BMPR2-associated PAH and that intervention against cytoskeletal defects may reverse established disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3311512PMC
http://dx.doi.org/10.1152/ajplung.00202.2011DOI Listing

Publication Analysis

Top Keywords

cytoskeletal defects
24
bmpr2 mutations
12
cytoskeletal
9
defects bmpr2-associated
8
pulmonary arterial
8
arterial hypertension
8
bmpr2-associated pah
8
revealed cytoskeletal
8
pulmonary microvascular
8
microvascular endothelial
8

Similar Publications

Background: In tauopathies, such as Frontotemporal Dementia (FTD), tau loses association with microtubules (MTs) and forms neurofibrillary tangles. Tau is an abundant MT-associated protein in neurons, which essentially regulate MT properties. Because pathological tau binds less avidly to MTs, which was thought to reduce the levels and stability of axonal MTs.

View Article and Find Full Text PDF

Loss of LRRK2 activity induces cytoskeleton defects and oxidative stress during porcine oocyte maturation.

Cell Commun Signal

January 2025

Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.

Leucine-rich repeat kinase 2 (LRRK2) is a ROCO family member which its mutation is closely related with Parkinson's disease, and LRRK2 is widely involved into the regulation of autophagy, vesicle transport and neuronal proliferation. However, the roles of LRRK2 during mammalian oocyte maturation are still largely unclear. In present study, we disturbed the activity of LRRK2 and showed its essential roles in porcine oocytes.

View Article and Find Full Text PDF

Chromosome instability is a prevalent vulnerability of cancer cells that has yet to be fully exploited therapeutically. To identify genes uniquely essential to chromosomally unstable cells, we mined the Cancer Dependency Map for genes essential in tumor cells with high levels of copy number aberrations. We identify and validate KIF18A, a mitotic kinesin, as a vulnerability of chromosomally unstable cancer cells.

View Article and Find Full Text PDF

Collective cell migration is critical for morphogenesis, homeostasis, and wound healing. Migrating mesenchymal cells form tissues that shape the body's organs. We developed a powerful model, exploring how nascent myotubes migrate onto the testis during pupal development, forming the muscles ensheathing it and creating its characteristic spiral shape.

View Article and Find Full Text PDF

Expanding the phenotype and genotype spectrum of TAOK1 neurodevelopmental disorder and delineating TAOK2 neurodevelopmental disorder.

Genet Med

December 2024

Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK; Division of Clinical Medicine, University of Sheffield, Sheffield, UK. Electronic address:

Article Synopsis
  • The TAOK proteins are important kinases involved in various cellular functions and are linked to neurodevelopmental disorders (NDDs) like those caused by TAOK1 and TAOK2 variants.
  • A study analyzed clinical and genetic data from individuals with these variants, revealing that TAOK1 variants lead to significant neurodevelopmental issues and some novel characteristics, while TAOK2 variants are tied to neurodevelopmental abnormalities, autism, and obesity.
  • This research expands the understanding of these disorders by presenting the largest cohort of individuals with TAOK1-NDD and identifying new variants and phenotypes associated with both TAOK1 and TAOK2.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!