Background: Although mobilization of hematopoietic stem cells and hematopoietic progenitor cells can be achieved with a combination of granulocyte colony-stimulating factor and plerixafor (AMD3100), improving approaches for hematopoietic progenitor cell mobilization is clinically important.
Design And Methods: Heparan sulfate proteoglycans are ubiquitous macromolecules associated with the extracellular matrix that regulates biology of hematopoietic stem cells. We studied the effects of a new family of synthetic oligosaccharides mimicking heparan sulfate on hematopoietic stem cell mobilization. These oligosaccharides were administered intravenously alone or in combination with granulocyte colony-stimulating factor and/or AMD3100 in mice. Mobilized hematopoietic cells were counted and phenotyped at different times and the ability of mobilized hematopoietic stem cells to reconstitute long-term hematopoiesis was determined by competitive transplantation into syngenic lethally irradiated mice followed by secondary transplantation.
Results: Mimetics of heparan sulfate induced rapid mobilization of B-lymphocytes, T-lymphocytes, hematopoietic stem cells and hematopoietic progenitor cells. They increased the mobilization of hematopoietic stem cells and hematopoietic progenitor cells more than 3-fold when added to the granulocyte colony-stimulating factor/AMD3100 association. Hematopoietic stem cells mobilized by mimetics of heparan sulfate or by the granulocyte colony-stimulating factor/AMD3100/mimetics association were as effective as hematopoietic stem cells mobilized by the granulocyte colony-stimulating factor/AMD3100 association for primary and secondary hematopoietic reconstitution of lethally irradiated mice.
Conclusions: This new family of mobilizing agents could alone or in combination with granulocyte colony-stimulating factor and/or AMD3100 mobilize a high number of hematopoietic stem cells that were able to maintain long-term hematopoiesis. These results strengthen the role of heparan sulfates in the retention of hematopoietic stem cells in bone marrow and support the use of small glyco-drugs based on heparan sulfate in combination with granulocyte colony-stimulating factor and AMD3100 to improve high stem cell mobilization, particularly in a prospect of use in human therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347663 | PMC |
http://dx.doi.org/10.3324/haematol.2011.047662 | DOI Listing |
STAR Protoc
January 2025
Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:
Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.
View Article and Find Full Text PDFCell Rep
January 2025
Division of Cell Regulation, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Cell Engineering, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Ibaraki, Japan. Electronic address:
Hematopoietic stem cells (HSCs) possess the capacity to regenerate the entire hematopoietic system. However, the precise HSC dynamics in the early post-transplantation phase remain an enigma. Clinically, the initial hematopoiesis in the post-transplantation period is critical, necessitating strategies to accelerate hematopoietic recovery.
View Article and Find Full Text PDFNat Commun
January 2025
Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
Gut microbiota disruptions after allogeneic hematopoietic cell transplantation (alloHCT) are associated with increased risk of acute graft-versus-host disease (aGVHD). We designed a randomized, double-blind placebo-controlled trial to test whether healthy-donor fecal microbiota transplantation (FMT) early after alloHCT reduces the incidence of severe aGVHD. Here, we report the results from the single-arm run-in phase which identified the best of 3 stool donors for the randomized phase.
View Article and Find Full Text PDFClin Lymphoma Myeloma Leuk
January 2025
Divisions of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
Background: Myelodysplastic syndromes/neoplasms (MDS) are a diverse group of clonal myeloid disorders. Advances in molecular technology lead to the development of new classification systems. However, large-scale epidemiological studies on MDS in Asian countries are currently scarce.
View Article and Find Full Text PDFJ Infect Chemother
January 2025
Division of Infectious Diseases, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan; Division of Immunology, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan.
Cytomegalovirus (CMV) infection remains one of the most common and challenging post-transplant infections. Children with inborn errors of immunity (IEI) and T-cell dysfunction are at high risk for CMV infection, which can be complicated by refractory and/or resistant cases. This case describes a Nepalese girl with MHC class II deficiency, who presented at 3 months of age with CMV and Pneumocystis jirovecii pneumonia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!