We numerically investigate the conical emission (CE) from ultrashort laser filaments, both considering and disregarding the higher-order Kerr effect (HOKE). While the consideration of HOKE has almost no influence on the predicted CE from collimated beams, differences arise for tightly focused beams. This difference is attributed to the different relative contributions of the nonlinear focus and of the modulational instability over the whole filament length.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.36.004812 | DOI Listing |
J Comput Chem
January 2025
Department of Chemistry, 1102 Natural Sciences II, University of California Irvine, Irvine, California, USA.
The high-energy shoulder in the gas-phase fluorescence emission spectrum of pyrene is a well-known example of non-Kasha emission. We comparatively assess two approaches, vibronic perturbation theory and nonadiabatic dynamics, in their ability to predict and explain the gas-phase fluorescence spectrum of pyrene. While both methods qualitatively capture the non-Kasha emission, they differ in their computational requirements, accuracy, and physical interpretation.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
In this study, the radiative and nonradiative decay pathways from the first singlet excited states (denoted as S) of three bithiophene-fused isoquinolines were investigated by using the mixed-reference spin-flip time-dependent density functional theory approach. These isoquinolines, which are prepared via [2 + 2 + 2] cycloaddition reactions between three types of bithiophene-linked diynes and nitriles, exhibit different fluorescence quantum yields in response to the positions of their sulfur atoms. The decay processes, including the fluorescence emission and internal conversion, were considered.
View Article and Find Full Text PDFWe demonstrate that amplitude modulation of a high-peak-power femtosecond laser pulse allows to change fundamentally the frequency-angular structure (FAS) of the supercontinuum formed during the filamentation in both molecular and atomic gases. Particularly, modulation with a 4-hole mask forms an inverted pattern of conical emission (CE) with its predominance in the Stokes wing of the pulse spectrum. We explain this phenomenon as a joint effect of self-phase modulation and temporal pulse splitting of interfering beamlets formed by the modulating mask.
View Article and Find Full Text PDFBiochemistry
January 2025
Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
Large Stokes shift red fluorescent proteins (LSS-RFPs) are of growing interest for multicolor bioimaging applications. However, their photochemical mechanisms are not fully understood. Here, we employed the QM(XDW-CASPT2//CASSCF)/MM method to investigate the excited-state proton transfer and photoisomerization processes of the LSS-RFP mKeima starting from its cis neutral isomer.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
Department of Chemistry, Graduate School of Science and Technology, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano 390-8621, Japan.
Organic molecules with an aggregation-induced emission (AIE) property have been attracting much attention from the viewpoint of application to solid state emissive materials. For the AIE mechanism, quantum mechanical studies proposed the restriction of the intramolecular motion (RIM) model with the contribution of the conical intersection (CI) and deduced the importance of the restricted access to a conical intersection (RACI) in the potential energy surface (PES). Although these theoretical studies have contributed to the elucidation of AIE phenomena, direct detection of the reaction dynamics is indispensable to clarify the actual PES and the deactivation mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!