A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of intra-ventrolateral periaqueductal grey palmitoylethanolamide on thermoceptive threshold and rostral ventromedial medulla cell activity. | LitMetric

Palmitoylethanolamide (PEA), a peroxisome proliferator-activated receptor-α (PPAR-α) ligand, exerts antinociceptive and anti-inflammatory effects. PEA (3 and 6 nmol) was microinjected in the ventrolateral periaqueductal grey (VL PAG) of male rats and effects on nociceptive responses and ongoing and tail flick-related activities of rostral ventromedial medulla (RVM) ON and OFF cells were recorded. Intra-PAG microinjection of PEA reduced the ongoing activity of ON and OFF cells and produced an increase in the latency of the nociceptive reaction. These effects were prevented by a selective PPAR-α antagonist, GW6471 and by a large-conductance Ca(2+)-activated K(+) channel inhibitor, charybdotoxin. Cannabinoid 1 (CB(1)) receptor blockade by AM251 increased the PEA-induced effect both on the ongoing activity of the ON cell and on the latency to tail flick without affecting the effect of PEA on the OFF cell. Conversely, a transient receptor potential vanilloid type 1 (TRPV(1)) blocker, I-RTX, had no effect on the ON cell activity and tail flick latency, whereas it blocked the PEA-induced decrease in ongoing activity of the OFF cell. PEA decreased the burst and increased the latency of tail flick-evoked onset of ON cell activity in a manner antagonised by GW6471 and charybdotoxin. AM251 and I-RTX, instead, enhanced these latter effects. In conclusion, intra-VL PAG PEA induces antinociceptive effects associated with a decrease in RVM ON and OFF cell activities. PPAR-α receptors mediate, and CB(1) and TRPV(1) receptors antagonise, PEA-induced effects within the PAG-RVM circuitry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2011.11.034DOI Listing

Publication Analysis

Top Keywords

cell activity
12
ongoing activity
12
periaqueductal grey
8
rostral ventromedial
8
ventromedial medulla
8
activity cell
8
latency tail
8
tail flick
8
effects
7
cell
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!