Distributing animals from a single breeding program to a global market may not satisfy all producers, as they may differ in market objectives and farming environments. Analytic hierarchy process (AHP) is used to estimate preferences, which can be aggregated to consensus preference values using weighted goal programming (WGP). The aim of this study was to use an AHP-WGP based approach to derive desired genetic gains for rainbow trout breeding and to study whether breeding trait preferences vary depending on commercial products and farming environments. Two questionnaires were sent out. Questionnaire-A (Q-A) was distributed to 178 farmers from 5 continents and used to collect information on commercial products and farming environments. In this questionnaire, farmers were asked to rank the 6 most important traits for genetic improvement from a list of 13 traits. Questionnaire B (Q-B) was sent to all farmers who responded to Q-A (53 in total). For Q-B, preferences of the 6 traits were obtained using pairwise comparison. Preference intensity was given to quantify (in % of a trait mean; G%) the degree to which 1 trait is preferred over the other. Individual preferences, social preferences, and consensus preferences (Con-P) were estimated using AHP and WGP. Desired gains were constructed by multiplying Con-P by G%. The analysis revealed that the 6 most important traits were thermal growth coefficient (TGC), survival (Surv), feed conversion ratio (FCR), condition factor (CF), fillet percentage (FIL%), and late maturation (LMat). Ranking of traits based on average Con-P values were Surv (0.271), FCR (0.246), TGC (0.246), LMat (0.090), FIL% (0.081), and CF (0.067). Corresponding desired genetic gains (in % of trait mean) were 1.63, 1.87, 1.67, 1.29, 0.06, and 0.33%, respectively. The results from Con-P values show that trait preferences may vary for different types of commercial production or farming environments. This study demonstrated that combination of AHP and WGP can be used to derive desired gains for a breeding program and to quantify differences due to variations market demand or production environment.

Download full-text PDF

Source
http://dx.doi.org/10.2527/jas.2011-4267DOI Listing

Publication Analysis

Top Keywords

farming environments
16
desired genetic
12
genetic gains
12
gains rainbow
8
rainbow trout
8
trout breeding
8
analytic hierarchy
8
hierarchy process
8
breeding program
8
derive desired
8

Similar Publications

One of the global problems of our time is food waste that is most significant at the household level. There is a lack of research that focus on the food-wasting behavior of the main breadwinner groups in society, generations Y and X. To fill this gap, the purpose of this study is to analyse the factors that influence the food-wasting behavior of these groups.

View Article and Find Full Text PDF

The over consumption of high fat, sugar, and salt foods increases population risk of overweight, obesity and diet-related noncommunicable diseases. The food environment mediates consumer food choices and thus plays an important role in diet quality and related health outcomes. The built food environment, where most people in high income countries access their food, has been found to be obesogenic.

View Article and Find Full Text PDF

Salinization processes profoundly impact soil quality and health, altering physical structure, chemical composition, and biological activity, particularly concerning soil microbial populations. Microbial communities play a pivotal role in maintaining soil ecosystem multifunctionality (EMF). Understanding the response of microbial communities to salinity stress is crucial for sustainable soil management and enhancing ecosystem resilience in arid and semi-arid regions.

View Article and Find Full Text PDF

The ReAct project: Analysis of data from 23 different laboratories to characterise DNA recovery given two sets of activity level propositions.

Forensic Sci Int Genet

January 2025

Bundeskriminalamt, Wiesbaden, Germany; International Commission on Missing Persons, The Hague, The Netherlands.

The ReAct (Recovery, Activity) project is an ENFSI (European Network of Forensic Science Institutes) supported initiative comprising a large consortium of laboratories. Here, the results from more than 23 laboratories are presented. The primary purpose was to design experiments simulating typical casework circumstances; collect data and to implement Bayesian networks to assess the value (i.

View Article and Find Full Text PDF

Online analysis of Amazon's soils through reflectance spectroscopy and cloud computing can support policies and the sustainable development.

J Environ Manage

January 2025

Geotechnologies in Soil Sciences Research Group - GeoCiS, Department of Soil Science, Luiz de Queiroz College of Agriculture - Esalq, University of São Paulo - USP, Piracicaba, São Paulo, Brazil. Electronic address:

Analyzing soil in large and remote areas such as the Amazon River Basin (ARB) is unviable when it is entirely performed by wet labs using traditional methods due to the scarcity of labs and the significant workforce requirements, increasing costs, time, and waste. Remote sensing, combined with cloud computing, enhances soil analysis by modeling soil from spectral data and overcoming the limitations of traditional methods. We verified the potential of soil spectroscopy in conjunction with cloud-based computing to predict soil organic carbon (SOC) and particle size (sand, silt, and clay) content from the Amazon region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!