We analyze theoretically the moment of inertia of the desert ant Cataglyphis (C. bicolor and C. fortis) around a vertical axis through its own center of mass when the animal raises its gaster to a vertical position. Compared to the value when the gaster is horizontal, the moment of inertia is reduced to one half; this implies that when increasing its angular acceleration the ant need apply only half the level of torque when the gaster is raised, compared to when the gaster is lowered. As an example, we analyze the cases of an ant running on circular and sinusoidal paths. In both cases, the ant must apply a sideways thrust, anti-roll and anti-pitch torques to avoid toppling, and, on the circular path when accelerating and throughout the sinusoidal trajectory, a torque to enable turning as the path curves. When the ant is accelerating in a very tight circle or running on a very narrow sinusoidal path, in which the amplitude of the sinusoid is less than the length of the ant's body, the forces required for the turning torque can equal and exceed those required for the sideways thrust, and can be reduced significantly by the ant raising the gaster, whereas the foot-thrust for the anti-roll and anti-pitch torques rises only modestly when the gaster is up. This suggests that there may be an evolutionary advantage for employing the gaster-raising mode of locomotion, since this habit will allow desert ants to use lower forces and less energy, and perhaps run faster on more tortuous paths.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2011.12.003DOI Listing

Publication Analysis

Top Keywords

desert ants
8
raising gaster
8
moment inertia
8
compared gaster
8
ant apply
8
cases ant
8
sideways thrust
8
anti-roll anti-pitch
8
anti-pitch torques
8
gaster
7

Similar Publications

Central-place foragers face high predation risk when repeatedly using routes near their nest, as predators can learn to ambush them there. We investigated the factors influencing the likelihood of desert ant foragers falling into pitfall traps, simulating common predators such as antlions or spiders. We varied the spatial configuration of the pitfall traps, the presence of trapped nestmates and the availability of visual landmarks to study the workers' susceptibility to falling into pits and their foraging success.

View Article and Find Full Text PDF

Cataglyphis ants have a polarity-sensitive magnetic compass.

Curr Biol

December 2024

Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074 Würzburg, Germany; AG Neurosensorik/Animal Navigation, Institute of Biology and Environmental Sciences, Faculty V, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany. Electronic address:

Spatial orientation based on the geomagnetic field (GMF) is a widespread phenomenon in the animal kingdom, predominantly observed in long-distance migrating birds, sea turtles, lobsters, and Lepidoptera. Although magnetoreception has been studied intensively, the mechanism remains elusive. A crucial question for a mechanistic understanding of magnetoreception is whether animals rely on inclination or polarity-based magnetic information.

View Article and Find Full Text PDF
Article Synopsis
  • Polarization photodetectors (pol-PDs) are essential for various fields like geological remote sensing and biological medicine, but existing commercial versions are bulky and slow due to their complex optical systems.
  • A new single-shot pol-PD inspired by desert ants features a compact design with four-directional grating arrays and a perovskite single-crystal thin film, eliminating the need for traditional polarization optics.
  • This innovative pol-PD significantly outperforms commercial models in detectivity and sensitivity, showcasing its potential in applications such as bionic navigation, image restoration in foggy conditions, stress visualization of materials, and identifying cancerous tissues without staining.
View Article and Find Full Text PDF

Vector-based navigation in desert ants: the significance of path-integration vectors.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

December 2024

Brain Research Institute, University of Zurich, Zurich, Switzerland.

Article Synopsis
  • The study investigates whether desert ants (Cataglyphis) use cognitive maps to navigate, particularly through finding shortcuts between familiar locations.
  • When ants were trained to visit two separate feeders, they were able to travel the novel route based on path integration, suggesting they rely on an internal navigation system rather than complex maps.
  • The research highlights the importance of path integration in the ants' navigation strategy, proposing that they optimally combine goal-oriented vectors and current information without needing a detailed "vector map" of their environment.
View Article and Find Full Text PDF

Compensation to visual impairments and behavioral plasticity in navigating ants.

Proc Natl Acad Sci U S A

November 2024

Centre de Biologie Integrative, Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, CNRS, Université Paul Sabatier, Toulouse 31062 cedex 09, France.

Desert ants are known to rely heavily on vision while venturing for food and returning to the nest. During these foraging trips, ants memorize and recognize their visual surroundings, which enables them to recapitulate individually learned routes in a fast and effective manner. The compound eyes are crucial for such visual navigation; however, it remains unclear how information from both eyes are integrated and how ants cope with visual impairment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!