Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Silver nanoparticles are being used increasingly in various applications because of their antibacterial properties. It is necessary to lower their direct contact with the skin by embedding in a polymer reducing their side effects. In this study, silver nanoparticles were synthesized inside the wool fibers acted as a polyfunctional ligands. Lecithin as a biological lipid was used to enhance the diffusion of silver ions and nanoparticles into the wool fibers reducing cytotoxicity effects of the nano silver loaded wool. The highest loading efficiency and inhibition zone was observed on the wool with the highest lecithin concentration. Presence of lecithin reduced the rate of nano silver release which results in decreasing the specific coefficient of lethality. Also, the extracted solution of the synthesized silver nanoparticles on the wool has not altered the morphology of L929 fibroblast cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2011.10.062 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!