The influence of hyaluronic acid (HA) and fructooligosaccharides (FOS) addition on low methyl pectin (LMP) gelation has been investigated in order to produce adhesive gel-based microparticles suitable for the development of a vaginal delivery system of pro- and prebiotics. First, dynamic rheological measurements were performed on LMP/Ca(2+) gels with or without FOS and HA in presence or not of porcine stomach mucins. This rheological method is known to translate the interactions between polymer and mucins and then simulate the polymer bioadhesion potential. Nevertheless, as this method is disputed, in vitro and ex vivo indentation test measurements were also achieved in order to correlate the results obtained. Despite some different results, the overall tendency indicates that addition of HA and FOS enhanced the mucoadhesive properties of LMP gels. Moreover, gel-based microparticles obtained according to an emulsification/gelation method and composed by LMP 3% (w/v), FOS 5% (w/v) and HA 0.5% (w/v) displayed a mucoadhesive potential adapted to vaginal delivery system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2011.11.039 | DOI Listing |
Biomedicines
May 2024
Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland.
Natural origin products are regarded as promising for the development of new therapeutic therapies with improved effectiveness, biocompatibility, reduced side effects, and low cost of production. Betulin (BE) is very promising due to its wide range of pharmacological activities, including its anticancer, antioxidant, and antimicrobial properties. However, despite advancements in the use of triterpenes for clinical purposes, there are still some obstacles that hinder their full potential, such as their hydrophobicity, low solubility, and poor bioavailability.
View Article and Find Full Text PDFGels
March 2024
Faculty of Physics and Technology, University of Plovdiv "Paisii Hilendarski", 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria.
Chitosan, being a biocompatible and mucoadhesive polysaccharide, is one of the most preferred hydrogel-forming materials for drug delivery. The objectives of the present study are to obtain spray-dried microparticles based on low-molecular-weight chitosan and study their potential application as cargo systems for the orally active drug benzydamine hydrochloride. Three types of particles are obtained: raw chitosan particles (at three different concentrations), cross-linked with sodium tripolyphosphate (NaTPP) particles (at three different chitosan:NaTPP ratios), and particles coated with mannitol (at three different chitosan:mannitol ratios), all of them in the size range between 1 and 10 µm.
View Article and Find Full Text PDFSci Rep
March 2023
Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), Via Fiorentina, 53100, Siena, Italy.
Glioblastoma multiforme (GBM) is the most aggressive primary tumor of the central nervous system and the diagnosis is often dismal. GBM pharmacological treatment is strongly limited by its intracranial location beyond the blood-brain barrier (BBB). While Temozolomide (TMZ) exhibits the best clinical performance, still less than 20% crosses the BBB, therefore requiring administration of very high doses with resulting unnecessary systemic side effects.
View Article and Find Full Text PDFActa Biomater
September 2022
Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. Electronic address:
Postoperative adhesion, bonding of the abdominal wall to damaged organs, causes severe complications after abdominal surgery. Despite the availability of physical barriers (i.e.
View Article and Find Full Text PDFMacromol Biosci
April 2022
Institute of Inorganic Chemistry, Department of Chemistry, University of Cologne, Greinstraße 6, 50939, Cologne, Germany.
In this study, the novel biomimetic aerogel-based composite scaffolds through a synergistic combination of wet chemical synthesis and advanced engineering approaches have successfully designed. To this aim, initially the photo-crosslinkable methacrylated silk fibroin (SF-MA) biopolymer and methacrylated hollow mesoporous silica microcapsules (HMSC-MA) as the main constituents of the novel composite aerogels were synthesized. Afterward, by incorporation of drug-loaded HMSC-MA into the self-assembled SF-MA, printable gel-based composite inks are developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!