Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The destruction of the commonly found cyanobacterial toxin, microcystin-LR (MC-LR), in surface waters by UV-C/H(2)O(2) advanced oxidation process (AOP) was studied. Experiments were carried out in a bench scale photochemical apparatus with low pressure mercury vapor germicidal lamps emitting at 253.7 nm. The degradation of MC-LR was a function of UV fluence. A 93.9% removal with an initial MC-LR concentration of 1 μM was achieved with a UV fluence of 80 mJ/cm(2) and an initial H(2)O(2) concentration of 882 μM. When increasing the concentration of MC-LR only, the UV fluence-based pseudo-first order reaction rate constant generally decreased, which was probably due to the competition between by-products and MC-LR for hydroxyl radicals. An increase in H(2)O(2) concentration led to higher removal efficiency; however, the effect of HO scavenging by H(2)O(2) became significant for high H(2)O(2) concentrations. The impact of water quality parameters, such as pH, alkalinity and the presence of natural organic matter (NOM), was also studied. Field water samples from Lake Erie, Michigan and St. Johns River, Florida were employed to evaluate the potential application of this process for the degradation of MC-LR. Results showed that the presence of both alkalinity (as 89.6-117.8 mg CaCO(3)/L) and NOM (as ∼2 to ∼9.5 mg/L TOC) contributed to a significant decrease in the destruction rate of MC-LR. However, a final concentration of MC-LR bellow the guideline value of 1 μg/L was still achievable under current experimental conditions when an initial MC-LR concentration of 2.5 μg/L was spiked into those real water samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2011.11.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!