Neuronal nitric oxide signaling regulates erection recovery after cavernous nerve injury.

J Urol

Department of Urology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA.

Published: February 2012

Purpose: Nitric oxide is the major neuronal mediator of penile erection but its role in erectile function status after cavernous nerve injury is uncertain. We determined the function of neuronal nitric oxide signaling in the pathobiology of erectile function recovery after partial cavernous nerve injury using genetic and pharmacological mouse experimental paradigms.

Materials And Methods: Erectile function was evaluated in 5 to 7 wild-type and neuronal nitric oxide synthase-α knockout mice per group 1, 3 and 7 days after unilateral crush or sham injury, at day 7 in wild-type mice treated with the nitric oxide synthase inhibitor L-NAME (l-nitro arginine methyl ester) (Sigma-Aldrich®) at baseline and for 6 days after unilateral crush injury. Apoptosis in the penis was evaluated by Western blot analysis of p-Akt-S473, 3-nitrotyrosine and caspase-3 after bilateral crush injury.

Results: Intracavernous pressure was significantly decreased at 1, 3 and 7 days in wild-type mice but only at day 1 in knockout mice after unilateral crush injury compared with sham treatment values (p <0.05). L-NAME treated wild-type mice had improved erectile function compared with the vehicle treated group at day 7 after unilateral crush injury (p <0.05). In penes p-Akt-S473 was significantly decreased in vehicle treated (p <0.05) but not in L-NAME treated wild-type mice. In penes 3-nitrotyrosine was significantly decreased in L-NAME treated wild-type and vehicle treated knockout mice (p <0.05). Caspase-3 in penes was significantly increased in vehicle treated (p <0.05) but not in L-NAME treated wild-type mice and vehicle treated knockout mice.

Conclusions: Neuronal nitric oxide signaling regulates erectile function recovery early after partial cavernous nerve injury, exerting an inhibitory role via the induction of apoptotic change in penile tissue. Therapeutic strategies to improve erectile function recovery after radical prostatectomy may consider targeting pathogenic sites of nitric oxide neurobiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474518PMC
http://dx.doi.org/10.1016/j.juro.2011.09.146DOI Listing

Publication Analysis

Top Keywords

nitric oxide
20
neuronal nitric
12
cavernous nerve
12
nerve injury
12
erectile function
12
unilateral crush
12
oxide signaling
8
knockout mice
8
days unilateral
8
wild-type mice
8

Similar Publications

Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice.

Front Neurosci

December 2024

Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.

Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is one of the most common chronic endocrine diseases, characterized by hyperglycemia, due to abnormal nitric oxide synthesis. The trend of an increase in the number of patients with DM continues. The medical and economic burden of DM is not only associated with hyperglycemia management but also with the management of DM-related complications.

View Article and Find Full Text PDF

Analgesic Effect of Dehydrocorydaline on Chronic Constriction Injury-Induced Neuropathic Pain via Alleviating Neuroinflammation.

Chin J Integr Med

January 2025

Department of Anaesthesiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210008, China.

Objective: To illustrate the role of dehydrocorydaline (DHC) in chronic constriction injury (CCI)-induced neuropathic pain and the underlying mechanism.

Methods: C57BL/6J mice were randomly divided into 3 groups by using a random number table, including sham group (sham operation), CCI group [intrathecal injection of 10% dimethyl sulfoxide (DMSO)], and CCI+DHC group (intrathecal injection of DHC), 8 mice in each group. A CCI mouse model was conducted to induce neuropathic pain through ligating the right common sciatic nerve.

View Article and Find Full Text PDF

The study investigated the degradation of 3-methoxy-1-propanol (3M1P) by OH using the M06-2X/6-311++G(d, p) level, with CCSD(T) single-point corrections. We focused on hydrogen atom abstraction from various alkyl groups within the molecule. The rate coefficient for 3M1P degradation was calculated from the sum of the rate coefficients corresponding to the removal of H-atoms from primary (-CH), secondary (-CH-), tertiary (-CH< ), and alcohol (-ΟH) groups.

View Article and Find Full Text PDF

In polar and alpine regions, global warming and landform changes are draining lakes, transforming them into permafrost with altered microbial communities and element cycling. In this study, we investigated bacterial and archaeal (prokaryotic) community changes in the newly exposed sediment of Zonag Lake (Tibetan Plateau), focusing on prokaryotic diversity, community structure, and genes involved in carbon fixation and nitrogen cycling across lateral (up to 800 m) and vertical (up to 80 cm) horizons. The results showed that prokaryotic richness decreased across the lateral horizons, coinciding with reductions in carbon concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!