Microfluidic study of fast gas-liquid reactions.

J Am Chem Soc

Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.

Published: February 2012

We present a new concept for studies of the kinetics of fast gas-liquid reactions. The strategy relies on the microfluidic generation of highly monodisperse gas bubbles in the liquid reaction medium and subsequent analysis of time-dependent changes in bubble dimensions. Using reactions of CO(2) with secondary amines as an exemplary system, we demonstrate that the method enables rapid determination of reaction rate constant and conversion, and comparison of various binding agents. The proposed approach addresses two challenges in studies of gas-liquid reactions: a mass-transfer limitation and a poorly defined gas-liquid interface. The proposed strategy offers new possibilities in studies of the fundamental aspects of rapid multiphase reactions, and can be combined with throughput optimization of reaction conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja2101278DOI Listing

Publication Analysis

Top Keywords

gas-liquid reactions
12
fast gas-liquid
8
reactions
5
microfluidic study
4
study fast
4
gas-liquid
4
reactions concept
4
concept studies
4
studies kinetics
4
kinetics fast
4

Similar Publications

Investigating how the size of carbon support pores influences the three-phase interface of platinum (Pt) particles in fuel cells is essential for enhancing catalyst utilization. This study employed molecular dynamics simulations and density functional theory calculation to examine the effects of mesoporous carbon support size, specifically its pore diameter, on Nafion ionomer distribution, as well as on proton and gas/liquid transport channels, and the utilization of Pt active sites. The findings show that when Pt particles are located within the pores of carbon support (Pt/PC), there is a significant enhancement in the spatial distribution of Nafion ionomer, along with a reduction in encapsulation around the Pt particles, compared to when Pt particles are positioned on the surface or in excessively large pores of the carbon support.

View Article and Find Full Text PDF

Self-Reactive Carbon Dioxide Absorbent with Sodium Carbonate-Based Hydrogel.

Gels

January 2025

Department of Packaging, Yonsei University, Wonju 26493, Republic of Korea.

Sodium carbonate is an abundant, low-cost, and low-hazard raw material widely used as a food additive and CO absorbent in the food industry. However, its application in food packaging is limited because it is used in solid form, either in sachets or as a compounding ingredient in plastics. Solid sodium carbonate requires an external moisture supply for CO absorption, with its performance dependent on moisture availability.

View Article and Find Full Text PDF

Hydrate-Based Methane Storage in Biodegradable Hydrogels Absorbing Dilute Sodium P-Styrenesulfonate Solution.

Gels

December 2024

Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China.

Developing an exceptional reaction medium with high promotion efficiency, desirable biodegradability and good recyclability is necessary for hydrate-based methane storage. In this work, a kind of eco-friendly hydrogel, polyvinyl alcohol-co-acrylic acid (PVA-co-PAA), was utilized to absorb dilute sodium p-styrenesulfonate (SS) solution, for constructing a hybrid reaction medium for methane hydrate formation. Hydrogels or dilute SS solutions (1-4 mmol L) had weak or even no promoting effects on hydrate formation kinetics, while the combination of them could synergistically promote methane hydrate formation.

View Article and Find Full Text PDF

Establishment of Gas-Liquid-Solid Interface on Multilevel Porous CuO for Potential-Driven Selective CO Electroreduction toward C or C Products.

ACS Appl Mater Interfaces

January 2025

College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China.

Copper-based catalysts demonstrate distinctive multicarbon product activity in the CO electroreduction reaction (CORR); however, their low selectivity presents significant challenges for practical applications. Herein, we have developed a multilevel porous spherical CuO structure, wherein the mesopores are enriched with catalytic active sites and effectively stabilize Cu, while the macropores facilitate the formation of a "gas-liquid-solid" three-phase interface, thereby creating a microenvironment with an increasing water concentration gradient from the interior to the exterior. Potential-driven phase engineering and protonation synergistically optimize the reaction pathway, facilitating a switch between CO and CH.

View Article and Find Full Text PDF

Simultaneous determination of the monosaccharide types and their absolute configurations in polysaccharides based on UPLC-MS/MS.

Int J Biol Macromol

January 2025

School of Pharmacy, Qinghai University, 251(#) Ningda Road, Xining 810016, Qinghai, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251(#) Ningda Road, Xining 810016, Qinghai, China. Electronic address:

Analysing monosaccharide composition is an essential step in deciphering polysaccharide structures. However, it presents significant challenges due to the pronounced hydrophilicity and the vast array of monosaccharide isomers. Gas/liquid chromatography, coupled with an aldononitrile acetate derivatisation, has been widely used for monosaccharide composition analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!