Enhanced fear learning occurs subsequent to traumatic or stressful events and is a persistent challenge to the treatment of post-traumatic stress disorder (PTSD). Facilitation of learning produced by prior stress can elicit an exaggerated fear response to a minimally aversive event or stimulus. Stress-enhanced fear learning (SEFL) is a rat model of PTSD; rats previously exposed to the SEFL 15 electrical shocks procedure exhibit several behavioral responses similar to those seen in patients with PTSD. However, past reports found that SEFL is not mitigated by extinction (a model of exposure therapy) when the spaced extinction began 24 h after stress. Recent studies found that extinction from 10 min to 1 h subsequent to fear conditioning "erased" learning, whereas later extinction, occurring from 24 to 72 h after conditioning did not. Other studies indicate that massed extinction is more effective than spaced procedures. Therefore, we examined the time-dependent nature of extinction on the stress-induced enhancement of fear learning using a massed trial's procedure. Experimental rats received 15 foot shocks and were given either no extinction or massed extinction 10 min or 72 h later. Our present data indicate that SEFL, following traumatic stress, is resistant to immediate massed extinction. Experimental rats showed exaggerated new fear learning regardless of when extinction training occurred. Thus, post-traumatic reactivity such as SEFL does not seem responsive to extinction treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000451PMC
http://dx.doi.org/10.3109/10253890.2011.650251DOI Listing

Publication Analysis

Top Keywords

fear learning
20
massed extinction
16
extinction
12
stress-enhanced fear
8
exaggerated fear
8
extinction 10 min
8
learning extinction
8
experimental rats
8
learning
7
fear
6

Similar Publications

Cpeb1 remodels cell type-specific translational program to promote fear extinction.

Sci Adv

January 2025

Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.

Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex () during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction.

View Article and Find Full Text PDF

Valence and salience encoding in the central amygdala.

Elife

January 2025

Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States.

The central amygdala (CeA) has emerged as an important brain region for regulating both negative (fear and anxiety) and positive (reward) affective behaviors. The CeA has been proposed to encode affective information in the form of valence (whether the stimulus is good or bad) or salience (how significant is the stimulus), but the extent to which these two types of stimulus representation occur in the CeA is not known. Here, we used single cell calcium imaging in mice during appetitive and aversive conditioning and found that majority of CeA neurons (~65%) encode the valence of the unconditioned stimulus (US) with a smaller subset of cells (~15%) encoding the salience of the US.

View Article and Find Full Text PDF

Learning to fear novel stimuli by observing others in the social affordance framework.

Neurosci Biobehav Rev

January 2025

Department of Psychology, University of Turin, Turin, Italy; Department of Medical and Clinical Psychology, Tilburg University, Netherlands; Centro Linceo Interdisciplinare "Beniamino Segre", Accademia Nazionale dei Lincei, Roma, Italy. Electronic address:

Fear responses to novel stimuli can be learned directly, through personal experiences (Fear Conditioning, FC), or indirectly, by observing conspecific reactions to a stimulus (Social Fear Learning, SFL). Although substantial knowledge exists about FC and SFL in humans and other species, they are typically conceived as mechanisms that engage separate neural networks and operate at different levels of complexity. Here, we propose a broader framework that links these two fear learning modes by supporting the view that social signals may act as unconditioned stimuli during SFL.

View Article and Find Full Text PDF

Background: Despite existing policies promoting companionship, it remains uncommon in Tanzania. Pregnant women select a trusted individual to accompany them during childbirth, providing emotional, physical, and spiritual support. The World Health Organization recommends birth companionship as integral to intrapartum care for positive maternal and fetal outcomes.

View Article and Find Full Text PDF

Enhanced behavioural and neural sensitivity to punishments in chronic pain and fatigue.

Brain

December 2024

Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.

Chronic pain and fatigue in musculoskeletal disease contribute significantly to disability, and recent studies suggest an association with reduced motivation and excessive fear avoidance. In this behavioural neuroimaging study, we aimed to identify the specific behavioral and neural changes associated with musculoskeletal pain and fatigue during reward and loss decision-making. Twenty-nine participants with chronic inflammatory arthritis and 28 healthy controls performed an instrumental learning task (4-armed bandit) during 3T brain fMRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!