L-arginine is shown to protect hematopoietic progenitor (32D cl 3) cells from death due to exposure to γ radiation ((137)Cs). Some of the other intermediates in the urea cycle, namely ornithine and citrulline, plus urea itself, were not found to have any significant impact on cell survival after irradiation. Intriguingly, supplementation of irradiated cells with L-arginine results in decreased production of peroxynitrite, suggesting that suppression of superoxide generation by nitric oxide synthase in one or more microenvironments is an important factor in the observed radioprotection. The absence of any radioprotective effect of L-arginine in cells at 3% oxygen also confirms the involvement of one or more oxygen-derived species. Knockdown experiments with nitric oxide synthase (NOS) siRNAs in cells and NOS knockout animals confirm that the observed radioprotection is associated with nNOS (NOS-1). L-arginine also ameliorates the transient inhibition of the electron-transport chain complex I that occurs within 30 min of completing the dose (10 Gy) and that appears to be a functional marker for postirradiation mitochondrial oxidant production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3417312PMC
http://dx.doi.org/10.1667/rr1281.1DOI Listing

Publication Analysis

Top Keywords

hematopoietic progenitor
8
cells l-arginine
8
nitric oxide
8
oxide synthase
8
observed radioprotection
8
l-arginine
5
cells
5
l-arginine radioprotector
4
radioprotector hematopoietic
4
progenitor cells
4

Similar Publications

To identify the differences between aged and young human hematopoiesis, we performed a direct comparison of aged and young human hematopoietic stem and progenitor cells (HSPCs). Alterations in transcriptome profiles upon aging between humans and mice were then compared. Human specimens consist of CD34+ cells from bone marrow, and mouse specimens of hematopoietic stem cells (HSCs; Lin- Kit+ Sca1+ CD150+).

View Article and Find Full Text PDF

TET2-loss enhances immediate and time-resolved IFNγ signaling responses across myeloid differentiation.

Exp Hematol

January 2025

Department of Medicine, Division of Hematology/Oncology & Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Nashville Veterans Affairs Hospital, Tennessee Valley Health Care, Department of Veterans Affairs, Nashville, TN. Electronic address:

Signaling responses to cytokines are disrupted in clonal hematopoiesis and myeloid malignancies. To better identify specific signaling response alterations in the presence or absence of TET2, we developed a 36-parameter CyTOF panel of both surface marker and phosphoprotein antigens in murine BM. We show diverse, cell-type specific inflammatory cytokine responses in healthy hematopoietic cells.

View Article and Find Full Text PDF

The purpose of the study was to investigate the effects of exercise training on the bone marrow immune microenvironment and on minimal residual disease of multiple myeloma patients who completed first-line induction treatment. Eight multiple myeloma patients underwent 5 months of exercise training along with standard medical treatment. Eight age- and sex-matched patients who received medical treatment only, served as controls.

View Article and Find Full Text PDF

Chemotherapy is included in the standard of care for cancer treatment during pregnancy. However, whether prenatal exposure to maternal chemotherapy treatment has a mutagenic impact on the fetal genome, remains unexplored. Therefore, we investigated mutation accumulation in hematopoietic stem and progenitor cells (HSPCs) from neonates born to pregnant cancer patients treated with chemotherapy, as well as healthy pregnant women and untreated pregnant cancer patients.

View Article and Find Full Text PDF

Skeletal Site-Specific Lipid Profile and Hematopoietic Progenitors of Bone Marrow Adipose Tissue in Patients Undergoing Primary Hip Arthroplasty.

Metabolites

January 2025

Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia.

Background/objectives: Bone marrow adipose tissue (BMAT) has been described as an important biomechanic and lipotoxic factor with negative impacts on skeletal and hematopoietic system regeneration. BMAT undergoes metabolic and cellular adaptations with age and disease, being a source of potential biomarkers. However, there is no evidence on the lipid profile and cellularity at different skeletal locations in osteoarthritis patients undergoing primary hip arthroplasty.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!