Background: Cancer staging and treatment presumes a division into localized or metastatic disease. We proposed an intermediate state defined by ≤ 5 cumulative metastasis(es), termed oligometastases. In contrast to widespread polymetastases, oligometastatic patients may benefit from metastasis-directed local treatments. However, many patients who initially present with oligometastases progress to polymetastases. Predictors of progression could improve patient selection for metastasis-directed therapy.

Methods: Here, we identified patterns of microRNA expression of tumor samples from oligometastatic patients treated with high-dose radiotherapy.

Results: Patients who failed to develop polymetastases are characterized by unique prioritized features of a microRNA classifier that includes the microRNA-200 family. We created an oligometastatic-polymetastatic xenograft model in which the patient-derived microRNAs discriminated between the two metastatic outcomes. MicroRNA-200c enhancement in an oligometastatic cell line resulted in polymetastatic progression.

Conclusions: These results demonstrate a biological basis for oligometastases and a potential for using microRNA expression to identify patients most likely to remain oligometastatic after metastasis-directed treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236765PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028650PLOS

Publication Analysis

Top Keywords

microrna expression
12
oligometastatic patients
8
patients
5
microrna
4
expression characterizes
4
characterizes oligometastasises
4
oligometastasises background
4
background cancer
4
cancer staging
4
staging treatment
4

Similar Publications

Upon stimulation and activation, mast cells (MCs) release soluble mediators, including histamine, proteases, and cytokines. These mediators are often stored within cytoplasmic granules in MCs and may be released in a granulated form. The secretion of cytokines and chemokines occurs within hours following activation, with the potential to result in chronic inflammation.

View Article and Find Full Text PDF

Response of miRNA to treatment with L. oil in multiple sclerosis.

Acta Neurobiol Exp (Wars)

January 2025

Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye.

MicroRNA‑regulated gene expression plays an important role in autoimmune diseases, such as multiple sclerosis (MS). This study investigated the expression patterns of microRNAs (miRNAs) in MS in brain tissues using an animal experimental autoimmune encephalomyelitis (EAE) model treated with Hypericum perforatum (HP) oil. C57BL/6 J mice were divided into two groups: MS and control.

View Article and Find Full Text PDF

Changes in protein levels of the mammalian cleavage factor, CFIm25, play a role in regulating pathological processes including neural dysfunction, fibrosis, and tumorigenesis. However, despite these effects, little is known about how CFIm25 (NUDT21) expression is regulated at the RNA level. A potential regulator of NUDT21 mRNA are small non-coding microRNAs (miRNAs).

View Article and Find Full Text PDF

Background: Early-stage pancreatic ductal adenocarcinoma (PDAC) is frequently misdiagnosed, contributing to its high mortality rate. Exosomal microRNAs (miRNAs) have emerged as potential biomarkers for the early detection of PDAC.

Aims: This study aimed to evaluate the feasibility of using exosomal miRNAs from PDAC tissues and serum as biomarkers for early detection and prognosis.

View Article and Find Full Text PDF

Introduction: Ovarian cancer is a significant cause of death among females. MiRNAs, particularly the miR-196 family, can influence tumor progression by targeting specific pathways. Detecting ovarian cancer early is challenging, highlighting the need for additional biomarkers such as miRNAs to improve diagnosis and treatment strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!